
Titel	des	Dokumentes 34883.pdf

Eingabedatum Wed	22	Jul	2015	12:45:49	PM	CEST

1%
1% http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc90.ps

1% http://www.cs.utexas.edu/users/moore/publicat ions/acl.txt

1% http://en.wikipedia.org/w/index.php?t it le=Nqthm&oldid=626125816

1% http://homepages.inf.ed.ac.uk/pbj/papers/thesis.pdf

1% http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.ps

1% http://dis.unal.edu.co/~algorithms/correctness/FormalVerProbAlg.pdf

1% http://www.dagstuhl.de/Reports/95/9509.pdf

1% https://ub-madoc.bib.uni-mannheim.de/31/1/31_1.pdf

Inst itut 	fur	Informat ik	und	Prakt ische	Mathematik	der	Christ ian-Albrechts-Universitat 	zu	Kiel	Olshausenstr.	40	D	-	24098	Kiel

Contribut ions	to	Mechanical	Proofs	of	Correctness	for	Compiler	Front-Ends

Debora	Weber-Wul

Bericht 	Nr.	9707	April	1997	Email:	weberwu@tfh-berlin.de	Dieser	Bericht 	enthalt 	die	Dissertat ion	der	Verfasserin.	Referent:

Prof.	Dr.	Hans	Langmaack	Korreferent:	Prof.	Dr.	Robert 	S.	Boyer

Contents

1	Introduct ion

1.1	Proven	Correct 	vs.	Provably	Correct 	Parsing	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1.2	Overview	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:

1

2	3

2	Previous	Work

2.1	Compiler	Veri	cat ion	with	the	Stanford	Veri	er	:	:	:	2.1.1	Scanning	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.1.2	Parsing	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	2.1.3	Summary	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.2	A	Veri	ed	Scanner	Generator	in	Gypsy	:	:	:	:	:	:	:	:	2.3	Cohn	with	LCF	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.4	Program	Synthesis	Work	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.5	A	VDM	Speci	cat ion	for	an	Earley	Parser	:	:	:	:	:	:	2.6

The	Boyer-Moore	Logic	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.6.1	Proof	Method	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.6.2	Syntax	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	2.6.3	Interact ive	Proof	Checker	:	:	:	:	:	:	:	:	:	:	:	2.6.4	Example	Proof	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	2.6.5	Compiler	Proofs	with	the

Boyer-Moore	Prover	2.6.6	Suitableness	for	this	Proof	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

5	6	6	7	7	7	8	8	9	9	10	12	12	15	18

5

3	A	Mechanical	Proof:	NFSA

3.1	The	Hand	Proof:	Rabin/Scott 	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.2	A	Construct ive	Proof	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.2.1

Automaton	De	nit ion	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.2.2	Construct ion	of	the	Determinist ic	Table	:	:	:	:	:	:	:	:	:	3.2.3	The	Determinist ic

Automaton	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.2.4	The	Proof:	Basic	Theorems	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.2.5	The	Proof:	The	Generated	Automaton

is	Determinist ic	3.2.6	The	Proof:	The	DFSA	Accepts	if	the	NFSA	does	:	:	:	3.2.7	The	Proof:	The	NFSA	Accepts	if	the	DFSA

does	:	:	:	3.3	An	Existent ial	Proof	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.3.1	Construct ion	of	the	Determinist ic	Table	:	:	:	:	:	:	:	:	:	3.3.2

The	Generated	Automaton	is	Determinist ic	:	:	:	:	:	:	:	3.3.3	The	DFSA	Accepts	if	the	NFSA	does	:	:	:	:	:	:	:	:	:	:	3.3.4	The	NFSA

Accepts	if	the	DFSA	does	:	:	:	:	:	:	:	:	:	:	3.3.5	Discussion	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	3.4	Extending	the	Automata	with	-

Transit ions	:	:	:	:	:	:	:	:	:	:	:	1

DFSA

21

21	24	25	26	29	30	32	34	38	39	39	40	41	42	43	43

2

CONTENTS

4.1	Mechanically	Proven-Correct 	Scanning	:	:	:	:	:	:	:	:	4.2	Split t ing	O	Pre-Tokens	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4.2.1	Character	Class	De

nit ion	:	:	:	:	:	:	:	:	:	:	:	4.2.2	Pre-Token	Class	De	nit ion	:	:	:	:	:	:	:	:	:	:	:	4.2.3	Construct ing	a	FSA	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4.2.4	Speci

cat ion	of	split 	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4.2.5	Implementat ion	of	split 	:	:	:	:	:	:	:	:	:	:	:	:	:	4.2.6	Proof	of	correctness	for	split 	:	:	:	:	:	:	:	:	:	:

4.2.7	An	Incorrect 	Implementat ion	:	:	:	:	:	:	:	:	:	4.2.8	E	cient	Scanning?	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4.3	Transforming	Pre-Tokens	into

Tokens	:	:	:	:	:	:	:	:	:	4.3.1	toktrans	Speci	cat ion	for	PLR	0	:	:	:	:	:	:	:	:	4.3.2	toktrans	Implementat ions	and	Proofs	for	PLR	0	4.4

Finding	an	Adequate	Representat ion	for	Tokens	:	:	:

4	Scanning

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

47

47	49	49	50	50	54	55	58	62	64	65	65	67	86

5	The	Parsing	Skeleton

5.1	Data	Types	:	:	:	:	:	:	:	:	:	:	5.1.1	Stacks	:	:	:	:	:	:	:	:	:	5.1.2	Grammar	:	:	:	:	:	:	:	5.1.3	Set	Theory	:	:	:	:	:	:	5.1.4	Lists	:	:	:	:	:	:	:	:	:

:	5.1.5	Trees	:	:	:	:	:	:	:	:	:	:	5.1.6	Con	gurat ions	:	:	:	:	:	5.1.7	Derivat ions	:	:	:	:	:	:	5.1.8	Sentent ial	Forms	:	:	:	5.1.9	The	Parsing

Tables	:	:	5.2	The	Parsing	Funct ion	:	:	:	:	:	5.3	The	Invariants	of	Parsing	:	:	:	5.3.1	Stack	Size	:	:	:	:	:	:	:	5.3.2	Leaves	:	:	:	:	:	:	:	:	:

5.3.3	Number	of	Reduct ions	5.3.4	Nodes	:	:	:	:	:	:	:	:	:	5.3.5	Main	Theorem	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

90	90	92	94	95	97	102	103	107	108	109	113	113	115	120	123	124

89

6	The	Parser	Table	Generator

6.1	LR	Parsing	methods	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	6.2	Construct ing	a	Parsing	Table	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	6.2.1	Canonical

Collect ion	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	6.2.2	Obtaining	a	DFSA	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	6.2.3	Construct ion	of	the	Parsing	Table	:	:	:	:	:	:	:	:

:	6.3	Implement ing	the	Table	Generator	:	:	:	:	:	:	:	:	:	:	:	:	:	6.3.1	Creat ing	the	NFSA	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	6.3.2	Transforming	the

NFSA	to	an	Equivalent	DFSA	:	6.3.3	Extract ing	the	Parsing	Table	:	:	:	:	:	:	:	:	:	:	:	:	6.3.4	Act ion	Table	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

6.4	Relevant	Theorems	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

125

125	126	127	128	131	134	134	135	139	139	146

CONTENTS

3

7	Discussion

7.1	General	Concerns	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.1	Why	Choose	NQTHM?	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.2	Terminat ion	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	7.1.3	Type	and	Implementat ion	Problems	:	:	:	:	:	:	:	:	7.1.4	Sets	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.5	Axioms	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.6	Existent ial	Quant i	cat ion	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.7	Second	Order	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.1.8

Script 	Writ ing	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.2	Proof	E	ort 	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.2.1	NFSA	DFSA	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	7.2.2	Scanner	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.2.3	Parser	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.2.4	Parser	Generator	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	7.3	Considerat ions	of	Prover	Use	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.3.1	The	\Matt 	Factor"	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.3.2	The	Lore	of

the	Prover	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7.3.3	A	Strategy	for	Using	NQTHM	Outside	of	Aust in?	7.4	Summary	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	Character	Class	Speci	cat ion	for	PLR	0	:	:	:	R	DFSA	for	PL0	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	Token	Transformat ion	De	nit ions	for	PLR

0	Retrieval	of	PLR	0	Characters	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

149

149	150	150	151	153	153	154	154	154	155	156	156	157	158	158	159	159	161	162

A	Scanning

A.1	A.2	A.3	A.4

:	:	:	:

:	:	:	:

:	:	:	:

:	:	:	:

:	:	:	:

:	:	:	:

:	:	:	:

:	:	:	:

171

171	171	172	175

B	Parsing

B.1	Parsing	Table	Generator	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	177	B.1.1	Generat ion	Instruct ions	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

:	:	:	:	:	:	:	177

177

4

CONTENTS

Summary

This	dissertat ion	was	an	invest igat ion	into	what	can	be	accomplished	by	a	software	engineer	in	proving	theorems	about	non-

trivial	programs	in	a	mathematically	well-founded	applicat ion	area	in	a	nite	amount	of	t ime	{	is	it 	possible	to	mechanically	prove	a

compiler	front-end	correct?	There	is	a	large	body	of	theorems	concerned	not	only	with	scanning	and	parsing,	but	also	with	the

generat ion	of	scanners	and	parsers	from	suitable	speci	cat ions.	Scanners,	for	example,	can	be	generated	from	collect ions	of

regular	expressions,	and	parsers	from	context free	grammars.	An	actual	mechanically	proven	correct 	parser	generator	does

seem	to	be	possible	to	construct 	and	verify,	but 	not	within	the	resources	and	scope	of	this	thesis,	in	which	a	scanner	and	a	set	of

token	transformat ion	funct ions	are	speci	ed,	implemented	and	mechanically	proven	to	conform	to	the	speci	cat ions	a	parser

skeleton	is	speci	ed,	implemented,	and	four	of	six	invariants	of	parsing	mechanically	proven	correct 	and	a	parsing	table	generator

is	speci	ed	and	implemented	and	a	port ion	of	the	proof	of	correctness,	the	equivalence	of	nondeterminist ic	and	determinist ic

automaton,	is	demonstrated.	Some	of	the	problems	associated	with	proving	a	large	system	correct 	with	the	assistance	of	a

theorem	prover	are	discussed	and	some	suggest ions	for	successful	use	of	NQTHM,	the	mechanical	theorem	prover	used,	are

presented.

Key	words

Veri	cat ion,	Compiler	construct ion,	Mechanical	Theorem	Proving,	Scanning,	Parsing,	NQTHM

CONTENTS

5

Zusammenfassung

In	dieser	Dissertat ion	wurde	untersucht,	inwieweit 	ein	Software-Ingenieur	Theoreme	uber	nicht-t riviale	Programme	mit 	Hilfe

eines	automat ischen	Theorembeweisers	in	endlicher	Zeit 	beweisen	kann.	Es	wurde	ein	mathematisch	gut	ausgeleuchtetes

Gebiet 	gewahlt ,	der	Compilerbau,	es	sollten	ein	lexikalischer	Analysator	und	ein	Syntaxanalysator	als	korrekt 	in	Bezug	auf	ihre

Spezi	kat ionen	bewiesen	werden.	Es	gibt 	eine	sehr	gro	e	Menge	an	Theoremen	im	Bereich	der	lexikalischen	und	syntakt ischen

Analyse	und	auch	an	Theoremen	uber	das	Generieren	von	solchen	Analysatoren.	Einen	lexikalischen	Analysator,	z.B.,	kann	man

mit 	einer	Menge	regularer	Ausdrucke	spezi	zieren,	einen	Syntaxanalysator	mit 	einer	kontext freien	Grammatik.	Es	war	moglich,

gro	e	Teile	dieser	Analysatoren	als	korrekt 	zu	beweisen	daher	scheint 	es	durchaus	moglich,	komplet te	Beweise	zu	fuhren,	die

Zeit invest it ion	ist 	jedoch	au	erordent lich	hoch.	Folgende	Bereiche	wurden	abgedeckt:	Ein	lexikalischer	Analysator	und	eine

Menge	von	Token-Transformat ions-Funkt ionen	wurden	spezi	ziert ,	implement iert ,	und	die	Implement ierungen	wurden	als	korrekt

mit 	Bezug	auf	die	Spezi	kat ionen	bewiesen.	Ein	Parserrahmen	wurde	spezi	ziert ,	implement iert ,	und	vier	der	sechs	Invarianten

wurden	als	korrekt 	bewiesen.	Ein	LR(1)-Tabellengenerator	wurde	spezi	ziert 	und	implement iert ,	und	ein	Teil	des

Korrektheitsbeweises,	die	Aquivalenz	von	nichtdeterminist ischen	und	determinist ischen	Automaten,	wurden	durchgefuhrt .	Einige

Probleme,	die	wahrend	des	Korrektheitsbeweises	mit 	Hilfe	eines	Theorembeweisers	fur	ein	so	gro	es	Programm	auftreten

werden	diskut iert .	Einige	Vorschlage	fur	die	Verwendung	vom	verwendeten	Theorembeweiser,	NQTHM,	werden	prasent iert .

Schlusselworte

Veri	kat ion,	Compilerbau,	automat isches	Theorembeweisen,	lexikalische	Analyse,	Syntaxanalyse,	NQTHM

6

CONTENTS

Chapter	1

Introduct ion

The	success	of	program	veri	cat ion	as	a	generally	applicable	and	completely	reliable	method	for	guaranteeing	program

performance	is	not	even	a	theoret ical	possibility.	{	James	H.	Fetzer	Fet88]

Veri	cat ion,	mechanical	or	not,	is	considered	by	some	to	be	the	cure-all	for	the	current	software	malaise,	by	others	such	as

Fetzer	to	be	impossible	to	do	for	more	than	toy	examples.	There	have	been	quite	a	number	of	mechanical	veri	cat ions	presented

in	recent	years	for	nontrivial	examples,	among	them	AL92,	BHMY89,	Bev88,	BY92,	CO90,	Coh88,	Hun89,	Moo89]	and	You89],

so	Fetzer's	argument	that	program	veri	cat ion	is	not	even	theoret ically	possible	as	a	completely	reliable	method	is	rather	weak.

The	point 	about	general	applicability	may	at 	rst 	seem	to	be	well	taken,	however.	These	researchers	have	either	writ ten	theorem

provers	themselves	or	have	worked	closely	with	theorem	prover	writers	in	mechanical	veri	cat ion	research	groups.	The

applicat ion	domains	for	these	veri	cat ions	could	have	happened	to	have	been	part icularly	amenable	to	proof.	In	order	for	veri

cat ion	technology	to	be	industrially	successful,	it 	is	necessary	for	it 	to	be	transferable	to	users	who	are	not	familiar	with	the

internal	workings	of	a	theorem	prover,	and	for	the	results	to	be	as	reliable	as	if	they	were	produced	by	a	veri	cat ion	expert

WW93b].	This	dissertat ion	is	an	invest igat ion	into	what	can	be	accomplished	by	a	software	engineer	in	proving	theorems	about

non-trivial	programs	in	a	mathematically	well-founded	applicat ion	area	in	a	nite	amount	of	t ime.	That	is,	is	it 	possible	to

mechanically	prove	a	compiler	front-end	to	be	correct?	The	eld	of	compiler	front-ends,	the	process	of	t ransforming	a	sequence

of	characters	into	an	abstract 	syntax	t ree	as	a	preparat ion	for	the	back-end,	the	code	generat ion	phase	of	a	compiler,	is	well-

explored.	Work	has	been	conducted	since	the	1950s	on	ident ifying	means	of	specifying	this	part 	of	a	compiler,	and	there	is	a

wealth	of	exist ing	hand	proofs	which	might	serve	as	a	basis	for	a	mechanical	veri	cat ion.	Tradit ionally,	there	are	three	major

phases	that	can	be	ident i	ed	in	this	part 	of	a	compiler.	They	are	the	scanning	phase,	which	groups	characters	from	the	input

sequence	into	meaningful	substrings,	referred	to	as	token	representat ions	or	pre-tokens	the	parsing	phase,	which	determines	if

the	token	sequence	conforms	to	the	phrase	structure	of	a	given	grammar	and	constructs	a	concrete	syntax	t ree	and	the

transforming	phrase,	which	manipulates	a	concrete	syntax	t ree,	pruning,	graft ing,	and	transforming	branches	to	construct 	an

abstract 	syntax	t ree.	There	is	a	large	body	of	theorems	concerned	not	only	with	scanning,	parsing,	and	transforming,	but	also

with	the	generat ion	of	scanners,	parsers,	and	transformers	from	suitable	1

2

CHAPTER	1.	INTRODUCTION

speci	cat ions.	Scanners,	for	example,	can	be	generated	from	a	collect ion	of	regular	expressions,	and	parsers	from	a	context-

free	grammar.

1.1	Proven	Correct 	vs.	Provably	Correct 	Parsing

What	exact ly	is	the	di	erence	between	having	a	system	which	has	been	proven	correct 	and	a	provably	correct 	system?	The

following	categories	can	be	dist inguished.	A	program	is	said	to	be

proven	correct 	when	a	hand	proof	of	the	correctness	of	the	program	with	respect	to	its

speci	cat ion	has	been	completely	conducted,

provably	correct 	when	the	process	of	conduct ing	a	hand	proof	of	correctness	for	it 	has	been	mechanically	proven	correct 	when	a

complete	machine	veri	cat ion	for	the	correctness	has

been	done,	and

described	in	enough	detail	so	that	one	can	see	that	the	proof	is	feasible,	but	the	proof	has	not	been	completely	worked	through,

mechanically	provably	correct 	when	the	techniques	for	conduct ing	such	a	proof	have	been

used	to	demonstrate	some	of	the	non-trivial	lemmata,	possibly	making	use	of	axioms,	by	which	means	it 	can	be	seen	that	the

formulat ion	is	amenable	to	mechanical	proof.	Ideally,	one	wishes	to	have	mechanically	proven	correct 	systems	that	were	proven

with	the	aid	of	a	mechanical	veri	cat ion	system	which	itself	has	been	proven	correct .	No	such	mechanical	veri	cat ion	system

exists	as	yet.	However,	there	are	a	number	of	veri	cat ion	systems	such	as	the	Boyer-Moore	theorem	prover	NQTHM,	the

results	of	which	are	of	high	believability	and	integrity.	As	was	seen	in	the	preparat ion	of	this	dissertat ion,	it 	is	not	a	t rivial	task	to

formulate	the	theorems	that	will	state	the	correctness	of	a	system	without	an	int imate	knowledge	of	the	applicat ion	area	and

the	veri	cat ion	system	to	be	used.	It 	is	even	more	di	cult 	to	actually	conduct	the	veri	cat ion.	The	mot ivat ion	for	invest igat ing

mechanically	provably	correct 	parsing	grew	out	of	the	ProCoS1	project ,	which	was	involved	in	part 	with	de	ning	a	provably

correct 	compiler	for	a	family	of	languages	related	to	occam	2.	The	Kiel	group	at tempted	to	not	only	de	ne	a	provably	correct

compiler,	but 	to	conduct	the	hand	proofs	as	well	(see	the	proofs	in	MO90,	Fra90]).	As	it 	is	necessary	to	go	through	a	number	of

bootstrap	iterat ions	in	the	construct ion	of	such	a	compiler,	the	problem	of	parsing	concrete	character	sequences	into	abstract

t rees	arises.	A	completely	proven	correct 	compiler	would	thus	have	to	include	a	proven	correct 	parser,	even	if	the	compiler	itself

was	only	a	code	generator	that 	operated	on	abstract 	syntax	t rees.	The	idea	of	a	proven	correct 	compiler	has	also	been

considered	in	the	\Short 	Stack"	proofs	conducted	with	NQTHM	as	described	in	BHMY89,	Moo89,	You89,	Hun89,	Bev89].	This

mechanically	proven	correct 	compiler,	however,	proceeds	from	a	representat ion	of	abstract 	syntax	and	does	not	address	the

parsing	problem.	As	part 	of	the	goal	of	construct ing	a	provably	correct 	compiler	for	the	ProCoS	project 	as	described	in	DB91]	it

was	also	necessary	to	prove	correct 	compilers	for	a	number	of	related	languages.	Since	this	would	entail	a	number	of	quite

similar	proofs	for	similar	languages,	it 	was	thought	that 	it 	would	be	easier	to	construct 	and	prove	correct 	a	set 	of	generators	for

each

1	ProCoS	was	part ially	funded	by	the	Commission	of	the	European	Communit ies	(CEC)	under	the	ESPRIT	program	in	the	eld	of

Basic	Research	Act ion	project 	no.	3104/7071:	\ProCoS:	Provably	Correct 	Systems".	Technical	reports	are	available	from	the

ProCoS	Secretary,	Programming	Research	Group,	Oxford	University	Comput ing	Laboratory,	8-11	Keble	Road,	Oxford	OX1

3QD,	United	Kingdom.

1.2.	OVERVIEW

3

part 	of	a	front-end.	This	would	ensure	that	all	front-ends	generated	by	this	method	would	be	correct ,	thus	saving	the	enormous	e

ort 	of	re-proving	the	front-end	for	any	changes	to	the	language	or	for	each	new	language.	The	complexity	of	this	problem,	the

mechanical	proof	of	a	front-end	generator,	has	been	found	to	be	outside	the	scope	of	what	can	feasibly	be	done	in	the	context

of	a	dissertat ion	topic.	Instead,	this	thesis	concentrates	on	the	topic	of	mechanically	provably	correct 	scanning	and	parsing	for

speci	c	languages,	and	addresses	only	some	of	the	issues	that	would	be	encountered	in	mechanically	provably	correct 	parser

generat ion.

1.2	Overview

An	actual	mechanically	proven	correct 	parser	generator	does	seem	to	be	possible	to	construct 	and	verify,	but 	not	within	the

resources	and	scope	of	this	thesis,	in	which	a	scanner	and	a	set	of	token	transformat ion	funct ions	are	speci	ed,	implemented	and

mechanically	proven	to	conform	to	their	speci	cat ions,	a	parser	skeleton	is	speci	ed,	implemented,	and	four	of	six	invariants	of

parsing	are	mechanically	proven	correct ,	and	a	parsing	table	generator	is	speci	ed	and	implemented	and	a	port ion	of	the	proof	of

correctness,	the	equivalence	of	nondeterminist ic	and	determinist ic	automaton,	is	demonstrated.	I	rst 	discuss	the	previous	work

done	on	mechanical	proofs	in	the	area	of	parsing	in	Chapter	2.	A	brief	introduct ion	to	the	mechanical	veri	cat ion	system	used,	the

Boyer-Moore	prover	NQTHM,	is	given	in	Sect ion	2.6.	Since	the	proof	of	the	equivalence	of	nondeterminist ic	and	determinist ic

automata	is	necessary	for	two	parts	of	a	compiler	front-end	{	for	the	scanner	and	for	the	table	generator	{	a	detailed	proof

discussion	is	presented	in	Chapter	3.	This	proof	also	gives	an	idea	of	the	complexity	involved	in	mechanical	proofs,	and	of	the

seemingly	obvious	propert ies	that	had	to	be	included	in	the	proof.	The	process	of	scanning	an	input	le	and	producing	a	sequence

of	tokens	is	discussed	in	Chapter	4.	A	nite	state	automaton	is	used	for	recognizing	potent ial	tokens	according	to	a	set 	of	regular

expressions.	A	scanner	nds	the	longest	such	token	that	is	a	pre	x	of	the	character	sequence	and	splits	the	sequence	into	such

longest	accept ing	pre	x	tokens.	Token	transformat ion	funct ions	operate	on	the	sequence	of	tokens.	It 	takes	into	account

aspects	that	cannot	be	expressed	as	regular	expressions	but	which	do	not	need	the	full	power	of	context-free	grammars,	or

which	are	easy	to	formulate	in	some	other	formalism.	Determining	the	phrase	structure	of	a	sequence	of	tokens	is	the	job	of	the

parser.	In	Chapter	5	a	table-driven	parser	skeleton	is	speci	ed,	implemented,	and	some	invariants	on	parsing	are	proven	correct .

In	Chapter	6	the	problem	of	construct ing	a	parsing	table	for	an	SLR(k)	grammar	is	discussed	and	an	implementat ion	in	the

Boyer-Moore	logic	is	given.	A	number	of	theorems	which	should	be	proven	for	a	parser	table	generator	are	discussed.	In	the

concluding	chapter,	some	of	the	problems	associated	with	proving	a	large	system	correct 	with	the	assistance	of	a	theorem

prover	are	discussed	and	some	suggest ions	for	successful	use	of	NQTHM	are	presented.	The	de	nit ions	for	the	scanner	and	the

parsing	table	produced	for	the	ProCoS	compiler	implementat ion	language	PLR	0	as	well	as	the	proof	scripts	for	all	of	the	de

nit ions	and	proofs,	can	be	obtained	from	http://www.t fh-berlin.de/	weberwu/diss/list .html.

4

CHAPTER	1.	INTRODUCTION

Chapter	2

Previous	Work

This	chapter	brie	y	examines	previous	at tempts	to	mechanically	verify	all	or	part 	of	the	process	of	determining	an	abstract

syntax	t ree	for	a	concrete	character	string	with	respect	to	a	grammar.	It 	is	interest ing	to	consider	the	kinds	of	theorems	which

can	be	stated	and	mechanically	proven	about	a	compiler	front-end.	The	front-end	is	more	of	a	t ransformat ion	system,	as

opposed	to	a	back-end,	which	is	concerned	with	semant ic	preservat ion	in	the	target	language	of	the	constructs	from	the	source

language.	There	are	two	major	projects:	the	veri	cat ion	of	a	complete	front	end	as	a	part 	of	a	compiler	veri	cat ion	for	a	Pascal-

like	language	by	Wolfgang	Polak	Pol81],	and	a	veri	cat ion	of	a	scanner	generator	by	Volker	Penner	Pen83].	There	are	also	two

proofs	of	correctness	for	a	simple	expression	language.	Paul	Gloess	Glo80]	used	the	Boyer-Moore	prover	to	conduct	a

correspondence	proof	for	an	expression	language	that	is	fully	but	not	extraneously	parenthesized.	Avra	Cohen	used	LCF	to

conduct	a	similar	proof	for	a	precedence	parsing	algorithm	Coh82].	Some	related	work	is	being	done	in	the	program	synthesis

community,	where	a	scanner	has	been	automat ically	generated	from	speci	cat ions	KLW94]	that	is	quite	similar	to	the

mechanically	veri	ed	scanner	in	this	thesis.	The	chapter	closes	with	a	descript ion	of	the	veri	cat ion	system	used	in	this	work,	the

Boyer-Moore	theorem	prover,	and	a	discussion	of	its	use	in	proving	compiler	correctness.

2.1	Compiler	Veri	cat ion	with	the	Stanford	Veri	er

In	his	1981	book	\Compiler	Speci	cat ion	and	Veri	cat ion"	Pol81],	Wolfgang	Polak	used	the	Stanford	Veri	er	Gro79]	to	verify

assert ions	about	the	implementat ion	of	a	compiler	for	a	Pascal-like	language	named	LS.	He	addressed	not	only	the	quest ions

concerning	code	generat ion,	which	have	also	been	discussed	in	BHMY89,	You88,	You89],	but 	also	considered	the	quest ions	that

arise	in	scanning,	parsing,	and	transforming	a	character	string	into	an	abstract 	syntax	t ree.	His	proof	encompasses	over	1000

veri	cat ion	condit ions	that	were	proven	about	475	procedures	and	funct ions.	Since	at 	that 	t ime	formal	speci	cat ion	techniques

for	programming	languages	were	not	generally	agreed	upon,	with	the	except ion	of	context-free	grammars	and	regular

expressions,	he	rst 	had	to	set 	up	formal	speci	cat ions.	For	scanning,	he	begins	with	an	intuit ive	operat ional	descript ion	of	the

funct ion,	which	includes	discarding	all	characters	which	are	not	part 	of	any	init ial	lexeme	substring,	nding	the	longest	init ial

substring	that	is	a	lexeme,	and	determining	the	token	which	matches	this	lexeme,	repeat ing	unt il	the	input	has	been	exhausted.

The	rst 	part 	of	the	speci	cat ion	is	quest ionable	in	as	much	as	it 	permits	the	extract ion	of	a	sequence	of	tokens	from	a	string

which	is	not	properly	part 	of	the	language	de	ned.	5

6

CHAPTER	2.	PREVIOUS	WORK

Polak's	formal	speci	cat ion	of	the	scanning	process	was	operat ional	in	a	funct ional	manner.	That	is,	he	de	ned	mutually	recursive

funct ions	that	implement	the	informal	descript ion.	If	he	had	been	using	a	funct ional	language	for	implementat ion,	he	would	have

had	nothing	to	prove,	as	the	\speci	cat ion"	would	have	been	the	implementat ion.	Accordingly,	he	only	proves	mechanically	that

the	program	re	ned	from	the	speci	cat ion	is	part ially	correct 	with	respect	to	the	speci	ed	funct ion.	Further	proofs,	including	the

validity	of	scan	or	that 	the	lexeme	split 	o	is	indeed	the	longest	such	pre	x	of	the	input	string,	will	have	had	to	have	been	done	by

hand,	outside	of	the	veri	er.	The	implementat ion	will,	however,	run	into	an	error	when	applied	to	the	empty	input	string	(the	rst

act ion	is	to	read	in	a	character,	not 	to	check	if	there	are	any	characters	to	read),	whereas	the	speci	cat ion	speci	es	returning	an

empty	token	sequence	without	signalling	an	error.	In	a	worst 	case	scenario,	if	the	(uninit ialized)	variable	for	holding	the	current

character	were	to	by	chance	hold	a	valid	lexeme	(for	example,	':'),	a	sequence	containing	a	token	would	be	issued	for	an	empty

input	string.	This	problem	is	of	course	easy	to	repair	by	including	a	check	for	end	of	le	as	the	rst 	statement	of	the	program	and/or

init ializing	the	variable.	A	more	serious	problem	involves	his	speci	cat ion	of	the	token	class	structure	of	a	language.	He	grouped

the	tokens	into	regular	languages	that	are	pre	x-closed	(except	for)	with	respect	to	one	another	and	-free.	That	is,	one	can

decide	on	the	basis	of	the	rst 	let ter	seen	to	which	class	the	next	token	will	belong.	This	means	for	example,	that 	:	and	:=	are	in

the	same	class,	and	the	e	ort 	of	deciding	which	token	has	been	found	is	delegated	to	the	semant ic	funct ions.	These	are	neither

speci	ed	nor	proven	correct 	with	the	help	of	the	veri	er,	but 	assumed	to	work	correct ly.	This	process	does	work	for	his	language

LS,	but	it 	is	not	applicable	for	general	regular	expressions	(as	will	be	discussed	in	sect ion	4.2.7),	as	the	concept	of	longest

match	does	not	distribute	over	concatenat ion	and	select ion.

2.1.1	Scanning

2.1.2	Parsing

For	the	parser,	Polak	de	ned	a	mapping	from	token	sequences	to	parse	trees	using	unambiguous	labeled	context-free

grammars.	Any	parse	tree	in	the	grammar	with	a	front ier	equal	to	the	token	sequence	is	a	valid	result 	from	the	parse	funct ion,

and	since	the	grammar	is	required	to	be	unambiguous,	there	is	only	one	such	parse	tree	for	those	token	sequences	which	are

members	of	the	language	de	ned	by	the	grammar.	He	de	ned	a	shift -reduce	parser	that 	uses	three	stacks,	a	state	stack,	a

symbol	stack,	and	a	stack	containing	a	forest 	of	part ial	parse	trees.	Looking	up	a	state/symbol	pair	in	an	LR(1)	parsing	table

returns	an	act ion,	either	shift ,	reduce,	accept,	shift reduce,	or	error.	The	parser	chooses	the	act ion	determined	by	the	state	on

the	top	of	the	state	stack	and	the	next	symbol	(i.e.	token)	in	the	input	stream.	The	shift reduce	act ion	does	not	seem	to	be

motivated	by	proof	concerns,	but	rather	by	an	at tempt	to	opt imize	the	parser	somewhat.	He	formulated	a	relat ion,	slrrel,

between	the	state	stack	and	the	symbol	stack.	This	relat ion	holds	between	a	stack	containing	only	the	init ial	state	and	an

empty	symbol	stack.	For	each	act ion	the	parser	can	take,	the	exact	correspondence	between	the	stacks	was	noted.	This

restricts	the	parsing	table,	however,	from	calling	for	-reduct ions	(which	is	the	case	when	there	are	-product ions	in	the	grammar)	{

for	in	that 	case,	both	the	state	stack	and	the	symbol	stack	grow,	but	the	slr-act ion	was	not	a	shift ,	as	was	speci	ed	in	the

correspondence.	Another	relat ion,	isderiv	(\is	derivat ion"),	is	de	ned	between	a	stack	of	part ial	parse	trees	and	a	sequence	of

tokens.	A	parse	tree	for	the	input	has	been	found	if	there	exists	a	parse	tree	which	is	in	the	isderiv	relat ion	with	the	input	token

sequence,	and	the	root	of	this	t ree	is	the	start 	symbol	of	the	grammar.	This	parse	tree	must	be	the	concrete	syntax	parse	tree

and	not	the	abstract 	syntax	parse	tree,	as	some	tokens	are	removed	during	tree	transformat ion	and

2.2.	A	VERIFIED	SCANNER	GENERATOR	IN	GYPSY

7

others	can	change	posit ion.	It 	is	unclear	how	this	was	mechanically	proven,	as	the	funct ion	for	construct ing	the	parse	tree,

mketree,	has	an	exit 	condit ion	(postcondit ion)	of	t rue,	meaning	that	any	terminat ing	implementat ion	for	this	funct ion	would	be

correct .	Surely	this	is	not	the	case,	as	one	must	ensure	that	the	tokens	remain	in	the	front ier	and	are	kept	in	order.	The	main

parsing	algorithm	itself	does	not	check	if	the	right 	hand	side	of	the	product ion	being	reduced	actually	matches	a	su	x	of	the

symbol	stack.	It 	only	removes	the	appropriate	number	of	symbols	from	the	respect ive	stacks	during	reduct ion.	The	main	loop

contains	two	assert ion	clauses	for	the	Stanford	Veri	er,	two	invariant	clauses,	and	three	large	comment	clauses.	These

comment	statements	require	addit ional	speci	cat ion	if	they	are	to	be	proven	correct .	In	summary,	the	front-end	port ions	of

Polak's	compiler	veri	cat ion	contain	much	proof	work	and	representat ional	equalit ies	which	were	conducted	outside	of	the

mechanical	veri	cat ion	system.	He	notes	that	the	development	of	the	parser	took	ten	re	nement	steps,	but	it 	is	not	clear	if	all	of

these	re	nement	steps	were	mechanically	proven	correct ,	or	if	only	the	veri	cat ion	condit ions	for	the	nal	version	were	checked

with	the	Stanford	Veri	er.	His	speci	cat ion	methods	are	also	so	int imately	connected	with	the	chosen	language,	that 	they	are	not

generally	applicable.	It 	must	be	emphasized,	however,	that 	the	major	thrust 	of	his	work	is	in	the	code	generat ion	phase,	a	part 	of

the	compiler	that 	is	not	discussed	here.

2.1.3	Summary

2.2	A	Veri	ed	Scanner	Generator	in	Gypsy

Volker	Penner	describes	in	Pen83]	a	scanner	generator	that 	was	developed	and	veri	ed	with	the	Gypsy	Veri	cat ion	Environment

(GVE)	GAS89].	The	GVE,	developed	at 	the	University	of	Texas,	Aust in,	consists	of	a	parser,	a	veri	cat ion	condit ion	generator,

and	a	theorem	prover	for	programs	writ ten	in	the	language	Gypsy.	The	veri	cat ion	condit ion	generator	generates	FloydHoare

assert ions	for	entry	and	exit 	condit ions,	and	for	loop	invariants.	If	all	the	veri	cat ion	condit ions	can	be	proven,	one	has

demonstrated	part ial	correctness	of	the	program.	That	is,	if	the	program	terminates,	then	it 	has	ful	lled	its	speci	cat ion.	Penner

de	ned	a	module	to	read	in	regular	expressions	that	describe	the	microsyntax	to	be	scanned.	Further,	he	de	ned	a	module	that

synthesizes	a	nite	state	automaton	from	the	microsyntax,	as	well	as	a	module	that	uses	this	automaton	to	construct 	a	scanner.

Semant ic	act ions	de	ne	what	to	do	with	each	token	constructed	and	are	included	in	the	scanner	without	veri	cat ion.	The

automaton	generat ion	algorithm	used	is	adapted	from	the	derivat ion	method	of	Brzozowski	Brz64]	using	rst 	sets.	The	research

was	conducted	in	Aust in	in	1982	on	a	DEC-20.	Because	of	t ime	constraints	only	three	funct ions	were	fully	veri	ed	(startstate,

exp	state	and	ind	to	char).	For	the	main	module	gen	automat	it 	was	possible	to	generate	veri	cat ion	condit ions	which	could	be

checked	by	hand,	but	which	were	not	completely	checked	by	machine.

2.3	Cohn	with	LCF

Avra	Cohn,	perhaps	best	known	for	her	work	in	microprocessor	veri	cat ion	Coh88,	Coh89a,	Coh89b],	wrote	a	technical	report 	in

1982	Coh82]	about	an	experiment	using	LCF	GMW79]	that	was	based	on	a	proof	at tempt	done	together	with	Robin	Milner

CM82].	A	precedence	parsing	algorithm	for	expressions	is	described,	and	a	correctness	property	for	the	algorithm	is	stated	and

informally	proved.	For	this	a	speci	c	unparsing	algorithm	is	stated,	namely	one	that	adds	the	minimum	number	of	brackets

necessary	to	reparse	the	expression.	The	theorem

8

CHAPTER	2.	PREVIOUS	WORK

is	that	the	parse	of	the	unparse	of	a	t ree	is	equal	to	that	t ree.	The	formalizat ion	of	the	problem	is	then	described	in	the	logic

PPLAMBDA,	and	the	generat ion	of	a	machine	proof	in	LCF	with	the	use	of	ML	tact ics	is	discussed.	The	parser	is	de	ned	as	a

set	of	16	clauses	which	could	be	considered	to	be	rewrite	rules,	some	of	which	are	condit ional	rules,	which	are	concerned	with

the	priority	of	the	operat ions.	The	algorithm	keeps	two	stacks,	one	with	a	forest 	of	parse	trees	and	one	with	left 	parentheses

and	operators.	When	a	right 	parenthesis	is	encountered,	a	parse	tree	is	constructed	with	the	top	operator	on	and	the	one	or	two

parse	trees	on	the	top	of	the	parse	tree	stack.	The	result 	is	pushed	back	onto	the	parse	tree	stack	and	the	left 	bracket

removed	from	the	operator	stack.	Cohn	notes	that	the	theorem	to	be	proven	is	not	t rue	for	all	t rees,	as	there	might	be	in	nite

trees	or	t rees	with	unde	ned	parts.	For	this	purpose	a	\well-de	ned"	t ree	predicate	is	introduced.	The	informal	proof	is	one	of

structural	induct ion	on	parse	trees,	and	is	proven	with	the	help	of	some	elaborate	relat ions,	as	the	theorem	is	not	composit ional.

If	a	string	s	parses	to	a	t ree	t ,	concatenat ing	s	onto	a	word	w	may	cause	the	port ion	of	the	parse	tree	represent ing	s	to	change,

as	the	priority	of	the	operators	may	be	in	uenced.	This	work	is	interest ing,	as	there	are	a	number	of	non-composit ional	and	non-

distribut ive	propert ies	that	need	to	be	proven	in	the	course	of	proving	a	compiler	front-end	correct .	The	ideas	used	for	proof	in

the	relat ively	\clean"	world	of	expressions	do	not,	however,	scale	up	to	be	useful	for	proof	of	the	correctness	of	a	complete

parser.

2.4	Program	Synthesis	Work

Recent ly,	there	has	been	some	related	work	in	the	area	of	program	synthesis	on	producing	correct 	compiler	front-ends.	Program

synthesis	researchers,	who	often	refer	to	the	kind	of	work	presented	in	this	thesis	as	invent-and-verify,	at tempt	to	derive	correct

programs	from	speci	cat ions	by	applying	transformat ions	which	have	already	been	proven	correct .	One	approach	was

invest igated	as	a	part 	of	the	\KORSO	{	Korrekte	Software"	Project1.	A	technical	report 	KW95]	describes	the	process	whereby

a	speci	cat ion	for	scanning	is	developed,	and	then	standard	program	synthesis	techniques	are	applied	to	obtain	rst 	a	working

scanner,	then	an	e	cient	one.	It 	is	interest ing	to	note	that	the	working	scanner	that	was	rst 	derived	is	quite	similar	to	the

interpret ing	scanner	that	was	\invented"	for	this	veri	cat ion	e	ort .	The	opt imizat ion	of	their	scanner	under	proven	transformat ions

results	in	a	state	machine	not	unlike	the	determinist ic	Rabin/Scott 	machine	described	in	Chapter	3.

2.5	A	VDM	Speci	cat ion	for	an	Earley	Parser

Cli	Jones	demonstrates	in	Jon80]	a	speci	cat ion	in	VDM	Jon90]	for	a	parser	using	the	Earley	method.	The	Earley	algorithm	is	a

top-down	approach	that	produces	all	possible	parsing	trees	for	a	string	in	parallel	using	an	LL(1)	grammar.	For	parsing	PLR	0

however,	a	bottom-up	parser	is	needed,	as	it 	has	constructs	that	can	only	be	described	with	LR(1)	grammars	and	not	with	LL(1)

grammars.	For	code	generat ion,	it 	was	also	necessary	to	obtain	a	speci	c	derivat ion,	the	right 	derivat ion.	The	work	of	Jones	was

invaluable	in	sparking	ideas	for	good	invariants	for	this	proof	e	ort ,	but 	the	presentat ion	given	was	not	mechanically	veri	able	in

NQTHM,	as	he	uses,	among	other	techniques,	x-point 	induct ion.

1

sponsored	in	part 	by	the	German	Ministry	of	Research	and	Technology	(BMFT).

2.6.	THE	BOYER-MOORE	LOGIC

9

2.6	The	Boyer-Moore	Logic

This	sect ion	describes	in	some	detail	the	logic	and	theorem	prover	used	in	this	proof	e	ort ,	and	discusses	some	of	the	Boyer-

Moore	proofs	that	have	been	done	in	the	area	of	compiler	construct ion,	as	they	apply	to	the	work	at 	hand.	The	Boyer-Moore

logic,	as	discussed	in	BM79,	BM88]	permits	the	statement	of	recursive,	side-e	ect 	free	funct ions	which	are	stated	as	s-

expressions	in	the	LISP-like	language	of	the	prover.	Theorems,	usually	stat ing	the	equality	of	two	terms	or	the	implicat ion	of	one

term	from	another,	can	also	be	represented	as	s-expressions.	They	can	be	proved	correct 	with	the	Boyer-Moore	prover

NQTHM2	for	funct ions	that	have	already	been	de	ned	in	the	current	session,	using	the	transformat ions	described	below.	De

nit ions,	lemmata,	and	other	rules	introduced	during	a	session	are	referred	to	in	the	logic	as	`events'.

2.6.1	Proof	Method

The	theorem	prover	employs	eight	basic	t ransformat ions	when	at tempt ing	to	prove	a	lemma	BM88]:	decision	procedures	for

proposit ional	calculus,	equality,	and	linear	arithmet ic	term	rewrit ing,	based	on	axioms,	de	nit ions	and	previously	proved	lemmata

applicat ion	of	veri	ed	user-supplied	simpli	ers	called	\metafunct ions"	variable	renaming	to	eliminate	\destruct ive"	funct ions	in	favor

of	\construct ive"	ones	heurist ic	use	of	equality	hypotheses	generalizat ion	by	the	replacement	of	terms	by	type-restricted

variables	eliminat ion	of	apparent ly	irrelevant	hypotheses	mathematical	induct ion	The	theorem	prover	also	contains	many

heurist ics	to	orchestrate	these	basic	techniques.	No	further	detail	on	the	mechanics	of	the	proving	techniques	will	be	given	here,

but	a	short 	descript ion	of	the	syntax	of	the	logic	will	enable	the	reader	to	understand	the	events	that	are	presented	in	this	thesis.

A	t iny	example	proof	is	included	in	order	to	present	the	\	avor"	of	the	proofs.

A	publicly	available	copy	of	Robert 	S	.	Boyer	and	J	Strother	Moore's	theorem	prover	NQTHM,	or	Matt 	Kaufmann's	interact ive

proof	checker	version	PC-NQTHM,	can	be	obtained	from	Internet	host	ftp.cli.com	(192.31.85.129)	by	anonymous	ftp	.

2

pub/nqthm/nqthm-1992	pub/pc-nqthm/pc-nqthm-1992	pub/nqthm-users-archive	pub/nqthm/nqthm-1992-images

The	newest	version	of	the	theorem	prover	The	newest	version	of	the	proof	checker	Archive	of	the	users	group	Images	for	sparc,

Macintosh,	Linux/486/GCL,...

The	theorem	prover	is	distributed	under	a	license	agreement	found	in	the	le	\basis.lisp."	A	Lisp	compiler	necessary	for	building

the	prover	is	also	available	at 	this	site,	GCL	(Gnu	Common	Lisp)	in	pub/gcl/gcl-?.?.tgz,	where	?	is	a	version	number.	GCL	is	also

available	on	Free	Software	Foundat ion	CD-ROMS.	Most	important ly,	no	registrat ion	of	any	form	is	required	for	GCL,	which	is

distributed	under	a	Gnu	license.	A	World	Wide	Web	home	page	is	o	ered	by	Computat ional	Logic	at 	ht tp://www.cli.com.

Computat ional	Logic,	Inc,	Aust in,	TX,	USA	is	a	company	that	Boyer	and	Moore	founded	together	with	Don	Good	that	does

many	types	of	work	in	the	veri	cat ion	eld.

10

CHAPTER	2.	PREVIOUS	WORK

The	syntax	of	NQTHM	is	very	similar	to	that	of	Pure	Lisp,	but	there	are	some	major	di	erences.	The	funct ion	DEFN	is	used	to	de

ne	recursive	funct ions	in	the	logic.

(DEFN	foo	(parameterlist)	term)

2.6.2	Syntax

This	will	be	denoted	in	this	thesis	as

Definit ion:	foo	(parameterlist)	=	term

NQTHM	will	only	accept	those	funct ions	which	adhere	to	the	de	nit ional	principle,	which	among	other	things	requires	the

terminat ion	of	each	funct ion	to	be	proven.	There	is	often	some	e	ort 	involved	in	determining	a	suitable	well-founded	ordering	for

the	funct ion	parameters	so	that	terminat ion	may	be	proven.	It 	is	necessary	to	demonstrate	terminat ion	in	order	to	keep

funct ions	like

Definit ion:	russell	(x)	=	(:	russell	(x))

from	introducing	inconsistencies	into	the	logic.	Four	basic	data	\types",	called	shells,	are	available:	literals,	natural	numbers,

negat ive	integers,	and	ordered	pairs.	A	shell	consists	of	funct ions	to	recognize	the	types	(for	the	basic	types	LITATOM,

NUMBERP,	NEGATIVEP,	LISTP),	construct 	them	(PACK,	ADD1,	MINUS,	CONS)	and	access	their	components	(UNPACK,

SUB1,	NEGATIVE-GUTS,	CAR,	CDR).	New	shells	can	be	introduced	by	de	ning	names	which	must	not	already	have	been	de

ned	for	these	funct ions	and	specifying	a	base	value	and	domains	for	the	components.	For	example,	the	following	shell	de	nes	a

representat ion	for	tokens.	The	constructor	is	called	mk-token,	the	base	or	unde	ned	value	is	nil,	the	recognizer	is	tokenp,	and	the

two	components	can	be	accessed	by	the	funct ions	token-name	and	token-value3.	With	(none-of),	any	sort 	of	value	is

acceptable	as	the	component,	and	a	default 	value	of	zero	is	de	ned	for	each	as	well.

(ADD-SHELL	mk-token	nil	tokenp	((token-name	(NONE-OF)	zero)	(token-value	(NONE-OF)	zero)))

The	following	notat ion	will	be	used	for	such	shells:	Event:	Add	the	shell	mk-token	,	with	recognizer	funct ion	symbol	tokenp	and	2

accessors:	token-name	,	with	type	restrict ion	(none-of)	and	default 	value	zero	token-value	,	with	type	restrict ion	(none-of)	and

default 	value	zero.	A	type	restrict ion	describes	what	\type"	of	objects	are	in	the	components	of	each	n-tuple	constructed.	The

type	restrict ions	are	either	ONE-OF	or	NONE-OF	a	set	of	explicit ly	given	types.	The	types	must	be	current ly	known	to	the

prover.

I	do	not	use	the	type	restrict ion	facility	for	components.	I	had	at 	rst 	thought	this	would	o	er	a	sort 	of	type-checking	for	objects	of

the	shell	type,	and	that	thus	I	would	not	have	to	check	that	the	type	of	components	was	proper	upon	construct ion.	However,	if	a

base	value	is	de	ned,	then	some	\obvious"	propert ies	propert ies	such	as	mk-token	(token-name	(tok),	token-value	(tok))	=	tok

are	not	t rue	for	the	base	element.	In	addit ion,	using	this	facility	excessively	can	slow	down	the	proofs	considerably.

3

2.6.	THE	BOYER-MOORE	LOGIC

11

There	are	two	pre-de	ned	Boolean	constants	(TRUE)	and	(FALSE)	which	are	abbreviated	T	and	F.	A	theorem	is	proven	if	it 	can

be	reduced	to	T	by	the	transformat ions	described	above.	If	it 	reduces	to	F	it 	can	be	either	t rue	and	not	(yet)	provable,	or	false	{

we	have	no	informat ion	other	than	being	able	to	inspect	the	subgoals	created.	There	is	a	third	possibility	{	the	proof	can	cont inue

down	an	in	nite	path	generat ing	new	levels	of	subgoals,	a	very	common	occurrence.	It 	is	seldom	the	case	that	a	proof	can	be

found	if	subgoals	have	been	created	to	a	depth	of	4,	although	there	is	one	proof	documented	at 	CLInc	that	proved	after

generat ing	goals	at 	level	12.	The	only	method	of	interact ion	at 	this	point 	is	to	break	o	the	proof	with	an	interrupt	command	and

attempt	to	formulate	further	rewrite	rules,	or	to	restate	the	theorem.	All	funct ions	in	the	logic	must	be	total,	unless	the

interpreter	V&C$	is	used4	.	This	is	the	reason	for	all	non-domain	parameters	being	coerced	to	a	default 	value,	usually	0,	in	order

for	the	basic	funct ion	to	be	a	total	funct ion.	For	example,	(CAR	0)	is	0	in	the	logic	and	(ADD1	T)	is	1.	A	condit ional	funct ion	is

provided,	but	it 	unfortunately	does	not	use	Lisp	semant ics	on	a	nil	condit ion	:	(IF	NIL	X	Y)	reduces	to	X	because	the	logic	selects

the	\else"	term	if	the	condit ion	is	equal	to	F,	and	nil	is	not	equal	to	F	in	the	logic.	This	is,	however,	most ly	a	problem	for

experienced	Lisp	programmers.	The	funct ion	PROVE-LEMMA	is	used	to	state	a	lemma	for	the	funct ions	that	have	been	de	ned,

for	example

(PROVE-LEMMA	foo-bar	(REWRITE)	(IMPLIES	(tokenp	x)	(EQUAL	(foo	(bar	x))	(foo	x))))

The	following	representat ion	will	be	used:

Theorem:	foo-bar

tokenp	(x)	!	(foo	(bar	(x))	=	foo	(x))	If	the	lemma	can	be	reduced	to	T	using	the	methods	described	above,	foo-bar	will	be	added

to	the	prover's	database	as	the	rule	type	speci	ed	in	the	second	parameter,	in	this	case	as	a	rewrite	rule,	that 	can	rewrite	(foo

(bar	x))	to	(foo	x)	when	the	hypothesis	(tokenp	x)	can	be	established.	An	opt ional	parameter	can	be	used	to	give	the	prover

\hints"	on	how	to	proceed	with	the	proof.	There	is	a	mechanism	for	introducing	axioms	into	the	proof	data	base.	The	syntax	is

the	same	as	for	theorem	statements,	but	uses	the	keyword	ADD-AXIOM.	This	is	very	important	for	the	process	of	discovering	a

proof,	as	one	can	formulate	the	intermediate	goals	as	axioms	in	order	to	check	whether	they	are	su	cient	for	proving	the	main

theorem.	The	proof	can	then	be	\rolled	back"	to	the	point 	where	an	axiom	was	introduced,	and	a	proof	of	the	axiom	can	be

inserted	so	that	in	the	end	the	nal	proof	builds	only	on	rst 	principles.

(ADD-AXIOM	remainder-plus	(REWRITE)	(IMPLIES	(EQUAL	(remainder	a	c)	0)	(EQUAL	(remainder	(plus	b	a)	c)	(remainder	b

c))))

It 	is	possible	to	express	funct ions	in	a	quoted	form	and	apply	this	interpreter	to	that	form.	In	this	manner	it 	is	possible	to	prove

that	the	russell	funct ion	ment ioned	above	is	nonterminat ing.	See	BM88,	pp.45-53]	for	a	detailed	descript ion	of	V&C$.

4

12

CHAPTER	2.	PREVIOUS	WORK

The	axioms	that	are	needed	in	this	thesis	are	enclosed	in	a	double	box,	as	are	all	theorems	proven	with	the	use	of	axioms,	to	set

them	o	from	the	theorems.

Axiom:	remainder-plus

((a	mod	c)	=	0)	!	(((b	+	a)	mod	c)	=	(b	mod	c))	It 	is	often	useful,	especially	in	areas	where	theorems	from	number	theory	are

needed,	to	conduct	the	intricate	proofs	of	the	theorems	separately	and	then	use	the	statement	as	an	axiom.	One	must,

however,	be	extremely	careful	about	using	axioms	that	have	not	been	veri	ed.	It 	is	very	di	cult 	to	formulate	such	axioms	and	one

often	overlooks	a	degenerate	case	which	will	make	the	axiom	state	a	falsehood.	The	prover	can,	of	course,	use	such	an	axiom

to	prove	pret ty	much	anything,	and	often	does.	The	prover,	called	NQTHM5,	is	in	a	basic	state	called	ground-zero6	or	boot-

strap	when	it 	is	rst 	executed.	This	basic	state	contains	no	lemmata	or	shells	other	than	arithmet ic	for	the	natural	numbers,	and

list 	construct ion	in	the	proof	data	base.	As	de	nit ions	are	accepted	and	theorems	proven,	they	are	added	to	the	data	base	and

used	in	future	proof	at tempts.	The	prover	will	use	the	most	recent ly	proven	theorems	rst ,	which	o	ers	the	user	another	method	of

guiding	the	prover.

2.6.3	Interact ive	Proof	Checker

There	is	a	major	\patch"	on	the	prover	available	that	was	extremely	useful	in	the	proof	discovery	process	described	in	this	thesis:

PC-NQTHM.	This	is	an	interact ive	proof	checker	that	can	be	loaded	on	top	of	NQTHM.	This	o	ers	the	user	access	to	the

transformat ional	tools	that	the	prover	uses,	but	they	can	be	applied	in	a	user-speci	ed	order.	In	this	manner	not	only	proofs	that

the	prover	will	not 	at tempt,	for	example	a	second	level	of	induct ion,	but	also	intricate	rewrit ing	can	be	achieved.	In	part icular,	one

can	dive	into	a	term,	have	PC-NQTHM	display	the	applicable	rewrite	rules,	choose	one	and	specify	a	part icular	subst itut ion,	and

then	rewrite.	In	this	manner	one	can	more	readily	copy	a	hand	proof,	and	along	the	way	nd	appropriate	rewrite	rules	to	guide

NQTHM	to	the	same	conclusion.	Working	with	PC-NQTHM	also	teaches	one	a	lot 	about	the	mechanics	of	proving,	as	one	can

see	the	e	ect 	of	every	single	step.	In	part icular,	one	often	nds	patent	falsehoods	that	never	get	reported	on	the	descript ion	level

of	the	proof,	but 	which	are	used	immediately	to	rewrite	to	some	other,	rather	myst ifying	term.	With	this	knowledge	it 	is	often

very	easy	to	discover	the	necessary	hypotheses	for	a	theorem	(most ly	to	exclude	degenerate	cases)	that	avoid	this	falsehood.

2.6.4	Example	Proof

The	following	is	a	t rivial	proof	generated	by	NQTHM.	It 	uses	all	the	t ransformat ion	funct ions	except	for	generalizat ion.

Interest ingly,	reversing	only	the	names	of	the	parameters	in	the	statement	of	the	problem	{	which	does	not	change	the	validity	of

the	theorem!	{	will	cause	the	prover	to	enter	an	in	nite	rewrit ing	loop.

A	previous	version	was	known	as	THM.	The	newer	version	has	a	formulat ion	of	a	8-quant i	er	that 	was	the	basis	for	the	acronym

for	`New	Quant i	ed	THM'	.	6	\Ground	zero"	is	the	point 	at 	which	a	bomb	detonates.

5

2.6.	THE	BOYER-MOORE	LOGIC

13

This	is	an	example	of	the	proof	of	a	simple	arithmet ic	theorem.	The	funct ion	TIMES	(a	satellite	of	the	ground	zero	BOOT-

STRAP)	is	de	ned	to	be

(DEFN	TIMES	(X	Y)	(IF	(ZEROP	X)	0	(PLUS	Y	(TIMES	(SUB1	X)	Y))))

The	prover	prints	out	\>	"when	it 	is	wait ing	for	input,	and	then	writes	a	running	commentary	to	the	proof.	Terms	that	are	given

names	that	begin	with	an	*"	are	subgoals	that	are	pushed	and	worked	on	later.	When	the	prover	selects	induct ion,	it 	states	the

induct ion	scheme	(in	this	case	on	the	construct ion	of	natural	numbers).	Note	that	two	of	the	goals	pushed	are	important

theorems,	the	right 	zero	of	t imes	and	the	distribut ivity	of	plus	through	t imes.

>(prove-lemma	commutat ivity-of-t imes	(rewrite)	(equal	(t imes	x	z)	(t imes	z	x)))	Give	the	conjecture	the	name	*	1.	We	will

appeal	to	induct ion.	Two	induct ions	are	suggested	by	terms	in	the	conjecture,	both	of	which	are	flawed.	We	limit 	our

considerat ion	to	the	two	suggested	by	the	largest	number	of	non-primit ive	recursive	funct ions	in	the	conjecture.	Since	both	of

these	are	equally	likely,	we	will	choose	arbit rarily.	We	will	induct	according	to	the	following	scheme:	(AND	(IMPLIES	(ZEROP	X)

(p	X	Z))	(IMPLIES	(AND	(NOT	(ZEROP	X))	(p	(SUB1	X)	Z))	(p	X	Z))).	Linear	arithmet ic,	the	lemma	COUNT-NUMBERP,	and

the	definit ion	of	ZEROP	inform	us	that	the	measure	(COUNT	X)	decreases	according	to	the	well-founded	relat ion	LESSP	in

each	induct ion	step	of	the	scheme.	The	above	induct ion	scheme	produces	the	following	two	new	conjectures	:	Case	2.

(IMPLIES	(ZEROP	X)	(EQUAL	(TIMES	X	Z)	(TIMES	Z	X))).	This	simplifies,	expanding	the	funct ions	ZEROP,	EQUAL,	and

TIMES,	to	the	following	two	new	conjectures:	Case	2.2.	(IMPLIES	(EQUAL	X	0)	(EQUAL	0	(TIMES	Z	0))).	This	again	simplifies,

obviously,	to:	(EQUAL	0	(TIMES	Z	0)),	which	we	will	name	*1.1.	Case	2.1.	(IMPLIES	(NOT	(NUMBERP	X))	(EQUAL	0	(TIMES

Z	X))).	Name	the	above	subgoal	*1.2.	Case	1.	(IMPLIES	(AND	(NOT	(ZEROP	X))	(EQUAL	(TIMES	(SUB1	X)	Z)	(TIMES	Z

(SUB1	X))))	(EQUAL	(TIMES	X	Z)	(TIMES	Z	X))).	This	simplifies,	opening	up	ZEROP	and	TIMES,	to	the	new	conjecture:	(

IMPLIES	(AND	(NOT	(EQUAL	X	0))	(NUMBERP	X)	(EQUAL	(TIMES	(SUB1	X)	Z)	(TIMES	Z	(SUB1	X))))	(EQUAL	(PLUS	Z

(TIMES	Z	(SUB1	X)))	(TIMES	Z	X))).	Applying	the	lemma	SUB1-ELIM,	replace	X	by	(ADD1	V)	to	eliminate	(SUB1	X).	We

employ	the	type	restrict ion	lemma	noted	when	SUB1	was	introduced	to	restrict 	the	new	variable.	This	produces	the	new

conjecture:	(IMPLIES	(AND	(NUMBERP	V)	(NOT	(EQUAL	(ADD1	V)	0))

14

(EQUAL	(TIMES	V	Z)	(TIMES	Z	V)))	(EQUAL	(PLUS	Z	(TIMES	Z	V))	(TIMES	Z	(ADD1	V)))),	which	further	simplifies,	obviously,

to:	(IMPLIES	(AND	(NUMBERP	V)	(EQUAL	(TIMES	V	Z)	(TIMES	Z	V)))	(EQUAL	(PLUS	Z	(TIMES	V	Z))	(TIMES	Z	(ADD1

V)))).

CHAPTER	2.	PREVIOUS	WORK

We	now	use	the	above	equality	hypothesis	by	subst itut ing	(TIMES	Z	V)	for	(TIMES	V	Z)	and	throwing	away	the	equality.	This

generates:	(IMPLIES	(NUMBERP	V)	(EQUAL	(PLUS	Z	(TIMES	Z	V))	(TIMES	Z	(ADD1	V)))).	Name	the	above	subgoal	*1.3.

We	will	appeal	to	induct ion.	There	are	three	plausible	induct ions.	However,	they	merge	into	one	likely	candidate	induct ion.	We

will	induct	according	to	the	following	scheme:	(AND	(IMPLIES	(ZEROP	Z)	(p	Z	V))	(IMPLIES	(AND	(NOT	(ZEROP	Z))	(p	(SUB1

Z)	V))	(p	Z	V))).	Linear	arithmet ic,	the	lemma	COUNT-NUMBERP,	and	the	definit ion	of	ZEROP	establish	that	the	measure

(COUNT	Z)	decreases	according	to	the	well-founded	relat ion	LESSP	in	each	induct ion	step	of	the	scheme.	The	above	induct ion

scheme	leads	to	the	following	two	new	formulas:	Case	2.	(IMPLIES	(AND	(ZEROP	Z)	(NUMBERP	V))	(EQUAL	(PLUS	Z

(TIMES	Z	V))	(TIMES	Z	(ADD1	V)))).	This	simplifies,	expanding	the	funct ions	ZEROP,	EQUAL,	TIMES,	PLUS,	and

NUMBERP,	to:	T.	Case	1.	(IMPLIES	(AND	(NOT	(ZEROP	Z))	(EQUAL	(PLUS	(SUB1	Z)	(TIMES	(SUB1	Z)	V))	(TIMES	(SUB1

Z)	(ADD1	V)))	(NUMBERP	V))	(EQUAL	(PLUS	Z	(TIMES	Z	V))	(TIMES	Z	(ADD1	V)))).	This	simplifies,	applying	SUB1-ADD1,

and	opening	up	ZEROP,	TIMES,	and	PLUS,	to	the	formula:	(IMPLIES	(AND	(NOT	(EQUAL	Z	0))	(NUMBERP	Z)	(EQUAL

(PLUS	(SUB1	Z)	(TIMES	(SUB1	Z)	V))	(TIMES	(SUB1	Z)	(ADD1	V)))	(NUMBERP	V))	(EQUAL	(PLUS	Z	V	(TIMES	(SUB1	Z)

V))	(ADD1	(PLUS	V	(TIMES	(SUB1	Z)	(ADD1	V)))))).	This	again	simplifies,	using	linear	arithmet ic,	to:	T.	That	finishes	the	proof

of	*1.3.	So	let 	us	turn	our	at tent ion	to:	(IMPLIES	(NOT	(NUMBERP	X))	(EQUAL	0	(TIMES	Z	X))),	named	*1.2	above.	We	will

t ry	to	prove	it 	by	induct ion.	There	is	only	one	suggested	induct ion.	We	will	induct	according	to	the	following	scheme:	(AND

(IMPLIES	(ZEROP	Z)	(p	Z	X))	(IMPLIES	(AND	(NOT	(ZEROP	Z))	(p	(SUB1	Z)	X))	(p	Z	X))).	Linear	arithmet ic,	the	lemma

COUNT-NUMBERP,	and	the	definit ion	of	ZEROP	can	be	used	to	establish	that	the	measure	(COUNT	Z)	decreases	according

to	the	well-founded	relat ion	LESSP	in	each	induct ion	step	of	the	scheme.	The	above	induct ion	scheme	leads	to	the	following

two	new	formulas:	Case	2.	(IMPLIES	(AND	(ZEROP	Z)	(NOT	(NUMBERP	X)))

2.6.	THE	BOYER-MOORE	LOGIC

(EQUAL	0	(TIMES	Z	X))).	This	simplifies,	opening	up	the	definit ions	of	ZEROP,	EQUAL,	and	TIMES,	to:	T.	Case	1.	(IMPLIES

(AND	(NOT	(ZEROP	Z))	(EQUAL	0	(TIMES	(SUB1	Z)	X))	(NOT	(NUMBERP	X)))	(EQUAL	0	(TIMES	Z	X))).	This	simplifies,

unfolding	the	definit ions	of	ZEROP,	TIMES,	NUMBERP,	PLUS,	and	EQUAL,	to:	T.	That	finishes	the	proof	of	*1.2.	So	we	now

return	to:	(EQUAL	0	(TIMES	Z	0)),	named	*	1.	1	above	.	We	will	appeal	to	induct ion.	There	is	only	one	plausible	induct ion.	We

will	induct	according	to	the	following	scheme:	(AND	(IMPLIES	(ZEROP	Z)	(p	Z))	(IMPLIES	(AND	(NOT	(ZEROP	Z))	(p	(SUB1

Z)))	(p	Z))).	Linear	arithmet ic,	the	lemma	COUNT-NUMBERP,	and	the	definit ion	of	ZEROP	establish	that	the	measure	(COUNT

Z)	decreases	according	to	the	well-founded	relat ion	LESSP	in	each	induct ion	step	of	the	scheme.	The	above	induct ion	scheme

generates	the	following	two	new	formulas:	Case	2.	(IMPLIES	(ZEROP	Z)	(EQUAL	0	(TIMES	Z	0))).	This	simplifies,	opening	up

the	definit ions	of	ZEROP,	TIMES,	and	EQUAL,	to:	T.	Case	1.	(IMPLIES	(AND	(NOT	(ZEROP	Z))	(EQUAL	0	(TIMES	(SUB1

Z)	0)))	(EQUAL	0	(TIMES	Z	0))).	This	simplifies,	expanding	the	definit ions	of	ZEROP,	TIMES,	PLUS,	and	EQUAL,	to:	T	.	That

finishes	the	proof	of	*1.1,	which	also	finishes	the	proof	of	*1.	Q.E.D.	0.0	1.2	0.5]	COMMUTATIVITY-OF-TIMES	>

15

2.6.5	Compiler	Proofs	with	the	Boyer-Moore	Prover

This	sect ion	discusses	prior	usage	of	the	Boyer-Moore	prover	in	proving	theorems	about	compilers	or	port ions	of	compilers.	The

previous	sect ions	discussed	work	with	di	erent	veri	ers	in	the	area	of	scanning	and	parsing.	This	sect ion	will	brie	y	ment ion	the

use	of	the	Boyer-Moore	prover	in	the	area	of	code	generat ion.

Short 	Stack

A	number	of	researchers	at 	CLInc	have	used	NQTHM	to	prove	a	remarkably	complex	compiler	to	be	correct .	Start ing	from	an	s-

expression	representat ion	for	the	abstract 	syntax	of	a	subset	of	the	language	Gypsy,	William	D.	Young	You89]	proved	the

correctness	of	a	code	generator	that 	produces	code	for	an	assembly	language	called	Piton.	J	Moore	then	veri	ed,	as	described

in	Moo88],	the	t ransformat ion	of	this	assembly	language	to	machine	code	for	a	hypothet ical	machine,	the	FM8501.	Warren	Hunt

veri	ed	the	design	of	this	microprocessor,	as	discussed	in	Hun89],	and	went	on	to	design	a	similar	microprocessor	called	the

FM8502.	Its	successor,

16

CHAPTER	2.	PREVIOUS	WORK

the	FM9001,	was	eventually	produced	{	and	worked	as	speci	ed.	The	results	were	interconnected	to	describe	a	complete	veri

ed	system	for	t ransforming	abstract 	syntax	to	machine	instruct ions	at 	the	gate	array	level	BHMY89].	They	call	their	system	the

\short 	stack",	as	it 	can	be	seen	as	a	number	of	individual	proofs	that	can	be	stacked	or	composed	with	one	another,	provided

that	some	appropriate	\glue"	lemmata	can	be	proven	which	show	that	the	results	of	one	stage	are	permissible	as	input	to	the

next	one.

Proof	Movie

The	ProCoS	compiler	veri	cat ion	group	at 	Royal	Holloway	Bedford	New	College	in	England	and	the	Christ ian-Albrechts-

University	at 	Kiel	in	Germany	adapted	a	simple	expression	compiler	problem	rst 	discussed	by	McCarthy	and	Painter	MP67]	as

their	benchmark	for	test ing	the	usefulness	of	mechanical	veri	cat ion	systems	for	conduct ing	compiler	proofs.	In	BBMS89]	the

speci	cat ion	for	this	simple	compiler,	which	can	only	t ranslate	assignment	statements	with	expressions	containing	constants	or

variables,	and	which	can	only	add	operators	into	machine	language	statements	for	a	two-address	machine	is	given.	This

compiler	is	called	the	add-assign	compiler.	During	a	visit 	at 	CLInc,	William	D.	(Bill)	Young	and	I	proved	the	correctness	of	a

compiler	for	the	add-assign	language	with	NQTHM.	The	discovery	of	that 	proof	is	discussed	in	detail	in	WW93a].	The	idea	of

using	this	type	of	minimal	compiler	proof	is	quite	useful	when	one	wants	to	prove	the	correctness	of	further	constructs.	The	new

construct 	is	added	to	the	basic	addassign	compiler	along	with	a	statement	of	correctness,	and	the	proof	is	now	quite	focused	on

exact ly	what	is	necessary	to	prove	the	correctness	of	the	new	construct .	Young	demonstrated	this	by	enhancing	the	add-assign

compiler	to	include	a	while-statement7.

Machine	Code	Program	Correctness

Yuan	Yu,	while	at 	the	University	of	Texas	in	Aust in,	used	NQTHM	to	formally	specify	the	machine	code	of	the	Motorola

MC68020	microcomputer.	He	then	proved	many	translat ions	to	this	machine	code	to	be	correct ,	among	them	a	binary	search

program,	a	greatest 	common	division	algorithm,	a	linear	t ime	majority	vote	algorithm,	and	Hoare's	quicksort 	program	writ ten	in	C

and	translated	by	Gnu	C,	a	program	to	compute	integer	square	roots	writ ten	in	Ada	and	translated	by	the	Verdix	Ada	compiler,

and	twenty-one	of	the	twenty-two	C	String	Library	funct ions	from	the	Berkeley	Unix	C	String	Library.	These	proofs	are	very

interest ing,	as	the	machine	involved	is	not	a	hypothet ical	one,	but	a	commercially	available	microprocessor.

Gloess	with	the	Boyer-Moore	Prover

Paul	Gloess,	while	an	Internat ional	Fellow	at 	SRI	Internat ional,	conducted	an	experiment	with	the	rst 	Boyer-Moore	prover,	THM,

to	prove	the	correctness	of	a	simple	parser	of	expressions.	The	proof	required	a	total	of	147	funct ions	and	lemmata.	Glo80]

describes	the	problem	somewhat	informally,	without	the	use	of	a	grammar,	and	de	nes	trees	by	example.	The	main	theorem

proven	states	that	if	X	is	a	proper	t ree,	then

7

email	from	young@cli.com,	July	4,	1990

2.6.	THE	BOYER-MOORE	LOGIC

17

unparsing	(\print ing")	the	t ree	and	then	reparsing	it 	(\evaluat ing	the	expression")	will	result 	in	the	same	tree.	(parse(unparse(tree))

=	t ree)	This	is	a	typical	statement	of	the	problem	for	side-stepping	the	normalizat ion	quest ion.	Unparsing	a	t ree	will	often	result

in	ambiguous	concrete	sequences,	as	some	structuring	informat ion	such	as	parentheses	can	be	added	at 	will.	Because	of	this,	a

normalizat ion	must	usually	be	speci	ed	so	that	it 	can	be	proven	that	the	unparse	of	the	parse	of	a	sequence	is	equal	to	the

normalizat ion	of	the	sequence.	The	expressions	to	be	parsed	consist 	of	atomic	symbols,	binary	and	unary	operators,	and

brackets.	Each	subexpression	{	including	a	term	with	a	unary	operator	{	must	be	bracketed,	but	no	extraneous	brackets	are

permit ted.	The	algorithm	implements	the	shift 	of	symbols	from	the	input	onto	a	stack	unt il	the	stack	contains	an	open

parenthesis	followed	by	a	complete	expression	and	an	operator	is	the	next	symbol	in	the	input.	This	operator	is	the	operator	for

the	outer	pair	of	brackets.	The	algorithm	now	checks	that	the	rest 	of	the	input	after	the	operator	comprises	a	valid	expression.

Thus,	the	algorithm	nds	the	inner	binary	operator,	and	creates	a	t ree	with	this	operator	as	the	root.	Using	the	left 	sub-

expression	as	the	rst 	branch	and	the	right 	sub-expression	as	the	second	branch,	it 	recurses	on	each	sub-expression.	The	author

states	that	the	complicated	and	extremely	ine	cient	algorithm	was	not	chosen	to	facilitate	the	proof,	but 	because	the	LL(1)

grammar	of	expressions	that	was	used	needed	mutual	recursion,	which	cannot	be	direct ly	expressed	in	the	language	of	the

prover	(although	there	are	methods	of	modeling	such	a	mutual	recursion).	Instead,	a	highly	existent ially	quant i	ed	de	nit ion	was

used	s	is	an	expression	()	s	is	a	string	of	one	atom	or	9	op:operator,	9	s1:expression	.	s	=	'<'	kk	op	kk	s1	kk	'>'	or	9	op:operator,

9	s1,s2:expression	.	s	=	'<'	kk	s1	kk	op	kk	s2	kk	'>'	and	the	existent ial	quant i	cat ions	were	implemented	by	witness	loops

explicit ly	searching	for	an	instant iat ion.	Gloess	states	that	he	uses	parsing	theory	and	the	fact 	that 	\a	proper	init ial	segment	of

an	expression	is	not	an	expression"	as	a	key	lemma	in	his	proof.	This	is	only	t rue	for	this	explicit ly	parenthesized	expression

language,	not	for	expressions	in	general.	Gloess	concludes	with	an	out look	that	begins	with	this	Fermat ian	note	:	\A	very	elegant

parser	has	recent ly	been	o	ered	to	us.	Lack	of	space	does	not	permit 	us	to	include	it 	here	:	:	:]."	The	problem	with	this	parser

seems	to	be	that	THM	is	not	capable	of	proving	the	terminat ion	of	the	algorithm,	and	thus	will	not 	accept	the	parser	de	nit ion.

Other	areas	of	use

This	is	a	part ial	list 	of	theorems	that	have	been	proven	with	NQTHM	or	PC-NQTHM.	The	items	without	direct 	citat ions	are

either	part 	of	the	examples	directories	in	the	.tar	les,	or	are	described	in	the	1994	research	report 	published	by	Computat ional

Logic	and	available	at 	ht tp://www.cli.com/reviews/94/index.html.	The	server	www.cli.com	also	contains	a	list 	of	available

technical	reports	that	can	be	ordered	on-line.	Mathematics

{	Prime	factorizat ion	uniqueness	BM79]	{	Unsolvability	of	the	halt ing	problem	BM84b]

18

CHAPTER	2.	PREVIOUS	WORK

{	RSA	public	key	encrypt ion	algorithm	is	invert ible	BM84c]	{	Gau	Law	of	Quadrat ic	Reciprocity	Rus92]	{	Church-Rosser	Theorem

Sha85]	{	Godel's	incompleteness	theorem	Sha86]	{	Irrat ionality	of	the	square	root	of	2	{	Exponent	two	version	of	Ramsey's

Theorem	{	Schroeder-Bernstein	Theorem	{	Koening's	Tree	Lemma	{	Group	Theory	lemmata	Yu90]	{	Wilson's	Theorem	Rus85]	{

Turing	Completeness	of	Pure	Lisp	BM84a]

Hardware	{	Hypothet ical	processor	FM8501	Hun87]	{	Motorola	MC	68020	BY91]	{	Processor	FM	9001	{	Railroad	gate	controller

{	Fuzzy	logic	controller	{	Parameterized	hardware	modules	VCDM90,	VVCDM92]	{	Synchronous	circuits	Bro89]	Theorem	proving

{	Ground	resolut ion	prover	{	Theorem	about	generalizat ion	Kau91]	Various	{	Short 	Stack	(Compiler	for	Gypsy	to	FM8501

machine	code)	BHMY89]	{	Towers	of	Hanoi	{	MACH	Kernel	speci	cat ion	{	Scheduling	theorem	for	real-t ime	operat ing	system	{

Implementat ion	of	an	applicat ive	language	with	Dynamic	Storage	Allocat ion	{	Simple	real-t ime	control	problem	(cross-wind

navigat ional	system)

2.6.6	Suitableness	for	this	Proof

People	have	often	advised	me,	during	this	proof	at tempt,	to	switch	to	a	di	erent	theorem	prover.	None,	it 	would	seem,	are

exact ly	well-suited	to	the	proofs	desired,	but	each	will	have	one	or	the	other	feature	that	would	be	interest ing	to	use	at 	speci	c

points	in	the	proof.	Often,	so-called	\modern"	theorem	provers	o	er	greater	expressiveness	or	more	ways	to	gloss	over

problemat ic	areas	of	a	proof	by	liberal	use	of	axiomat izat ion.	However	many	t imes	the	greater	expressiveness	is	bought	at 	the

price	of	less	power.	That	is,	there	are	many	things	that	can	be	expressed,	but	not	proven.	And	many	of	the	short 	cuts	involve

potent ially	dangerous	axioms	{	one	can	prove	anything	with	inconsistent	axioms.

2.6.	THE	BOYER-MOORE	LOGIC

19

The	Boyer-Moore	prover	NQTHM	is	an	\old"	system,	in	that	it 	has	its	roots	in	the	early	80's.	It 	is	however	a	mature	system,	in

that 	many	researchers	have	used	the	prover	whom	are	not	direct ly	involved	with	the	development	of	the	system.	This	is	in

contrast 	to	other	systems,	for	which	the	most	successful	users	are	usually	a	small	circle	of	persons	close	to	the	original

developers.	NQTHM	o	ers	a	wide	body	of	experience	in	using	the	system,	and	there	are	a	number	of	libraries	and	tools	available

that	can	make	the	search	for	proof	somewhat	less	painful.	It 	is	st ill	a	lot 	of	work,	and	the	learning	curve	is	st ill	quite	steep	{	but

much	of	that 	seems	to	be	learning	to	use	rigorous	proof	methods.	Only	when	a	theorem	has	been	proven	on	paper	is	there	a

chance	of	gett ing	the	theorem	prover	to	do	likewise.	An	anonymous	referee	to	one	of	my	papers	noted	that	working	with

NQTHM	is	an	at tempt	to	coax	a	stubborn,	obnoxious	prover	to	assent	to	the	obvious	{	an	apt	descript ion	for	the	frustrat ions

involved	in	learning	to	use	it .	When	one	has	succeeded,	however,	in	stat ing	a	problem	in	a	manner	that	is	amenable	to	proof	and

proving	it 	with	NQTHM,	then	one	can	be	reasonable	sure	that	it 	is	indeed	correct .	In	summary	we	can	say	that	while	NQTHM	has

an	extremely	primit ive	user	interface,	it 	is	st ill	quite	suitable	to	the	work	at 	hand.	It 	is	available,	stable,	and	o	ers	a	wide	range	of

examples	of	proofs,	in	di	erent	elds	and	in	the	compiler	applicat ion	area,	as	an	experience	base.

20

CHAPTER	2.	PREVIOUS	WORK

Chapter	3

A	Mechanical	Proof:	NFSA

DFSA

This	chapter	discusses	a	mechanical	proof	of	the	equivalence	of	nondeterminist ic	and	determinist ic	nite	state	automata.	This

proof	is	a	key	proof	in	both	scanning	and	in	the	construct ion	of	parser	tables.	The	theoret ical	basis	of	this	proof	is	discussed,	as

rst 	published	by	Rabin	and	Scott .	Then	a	construct ive	proof	in	NQTHM	is	presented	of	the	equivalence	of	the	two	automata

using	the	same	construct ion	algorithm,	followed	by	a	comparison	with	an	existent ial	proof	in	NQTHM	done	by	William	D.	Young

from	CLInc.

3.1	The	Hand	Proof:	Rabin/Scott

Rabin	and	Scott 	RS59]	published	a	proof	of	the	equivalence	of	nondeterminist ic	nite	state	automata	(NFSA)	and	determinist ic

nite	state	automata	(DFSA)	using	the	ideas	for	a	construct ion	method	that	J.R.	Myhill	put 	forth	in	a	technical	report 	Myh57].	This

proof	was	the	basis	for	many	further	proofs	in	the	area	of	parsing	theory,	and	is	certainly	responsible	for	making	the	construct ion

of	scanner	and	parser	generators	feasible.	The	proof	structure	was	used	as	the	start ing	point 	for	the	mechanical	veri	cat ion.	It 	is

reproduced	here	verbat im	enclosed	in	boxes	and	discussed	in	detail,	in	order	to	better	contrast 	it 	with	the	mechanical	proof.

Their	rst 	de	nit ion	is	of	a	nite	automaton1.

De	nit ion	1	A	(nite)	automaton	over	the	alphabet	is	a	system	A	=	(S,	M,	so	,	F),	where	S	is	a	nite	non-empty	set	(the	internal

states	of	A),	M	is	a	funct ion	de	ned	on	the	Cartesian	product	S	of	all	pairs	of	states	and	symbols	with	values	in	S	(the	table	of

t ransit ions	or	moves	of	A.	s0	is	an	element	of	S	(the	init ial	state	of	A),	and	F	is	a	subset	of	S	(the	designated	nal	states	of	A).

Since	M	is	a	total	funct ion	that	returns	only	one	state,	as	discussed	just 	after	this	de	nit ion,	this	is	a	determinist ic	automaton.

The	funct ion	M	is	extended	to	S	T	(T	is	what	would	be	called	today)	by	de	ning

M	(s)	=	s	8	s	2	S

and

1

M	(s	x)	=	M	(M	(s	x))	8	s	2	S	x	2	T	2	:

The	numbering	of	the	de	nit ions	is	the	numbering	used	in	RS59].

21

22

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

They	then	characterize	mathematically	the	set	of	tapes	which	can	be	recognized	by	such	an	automaton	and	prove	some

theorems	about	automata	equivalence.	Then	the	nondeterminist ic	operat ion	of	an	automaton	is	de	ned	RS59,	p.	120].

De	nit ion	9	A	nondeterminist ic	(

nite)	automaton	over	the	alphabet	is	a	system	A	=	(S	M	S0	F)	where	S	is	a	nite	set ,	M	is	a	funct ion	of	S	with	values	in	the	set	of

all	subsets	of	S,	and	S0	and	F	are	subsets	of	S	.	Instead	of	one	start 	state	such	an	automaton	has	a	set	of	states	S0	as	the

start ing	points.	Note	that	this	funct ion	M	cannot	easily	be	extended	to	S	T	because	the	result 	of	M	is	a	subset	of	,	not 	an

element.	So	they	speak	of	an	automaton	accept ing	a	tape	{	that 	was	the	current	idea	of	a	machine,	a	box	taking	a	tape	input

and	perhaps	producing	a	tape	output	{	when	there	is	at 	least 	one	\winning	combinat ion	of	choices	of	states	leading	to	a

designated	nal	state".	They	de	ne	the	set	T	(A)	to	be	the	set	of	all	tapes	accepted	by	an	automaton	A.

De	nit ion	10	Let	A	be	a	nondeterminist ic	automaton.

(i)	s0	is	in	S0	(ii)	si	is	in	M	(si;1	i;1)	for	i	=	1	2	:	:	:	n	2	(iii)	sn	is	in	F	.

The	set	T	(A)	of	tapes	accepted	by	A	is	the	collect ion	of	all	tapes	x	=	0	1	:	:	:	n;1	for	which	there	exists	a	sequence	s0	s1	:	:	:	sn
of	internal	states	of	A	such	that

The	rst 	state	must	be	a	member	of	the	set	of	start ing	states,	each	state	in	the	middle	of	the	sequence	of	states	must	be	a

member	of	the	mapping	of	the	previous	state	and	the	corresponding	input	symbol	from	the	tape,	and	the	last 	state	must	be	a

member	of	the	nal	states.	This	is	a	major	hindrance	to	a	mechanical	proof	in	the	absence	of	quant i	cat ion,	as	such	a	sequence

has	to	be	constructed	and	its	existence	may	not	be	hypothesized.	The	authors	note	that	if	M	(s)	consists	of	exact ly	one	internal

state	for	each	s	2	S	and	2	,	it 	is	determinist ic3.	Thus	determinist ic	automata	are	a	special	case	of	nondeterminist ic	automata.	A

construct ion	algorithm	is	then	given	for	nding	an	equivalent	determinist ic	automaton	for	any	nondeterminist ic	automaton	RS59,

p.	121].

De	nit ion	11	Let	A	=	(S	M	S0	F)	be	a	nondeterminist ic	automaton.	D(A)	is

the	system	(T	N	t0	G)	where	T	is	the	set	of	all	subsets	of	S	,	N	is	a	funct ion	on	T	such	that	N	(t)	is	the	union	of	the	sets	M	(s)

for	s	in	t ,	t0	=	S0	,	and	G	is	the	set	of	all	subsets	of	S	containing	at 	least 	one	member	of	F	.

In	construct ing	the	equivalent	determinist ic	machine,	the	power	set 	of	all	nondeterminist ic	states	is	used	as	the	set	of	states.

This	set 	is	very	large,	but	nite	if	the	basis	is	nite.	The	nondeterminist ic	t ransit ion	funct ion	M	results	in	aS	set	of	states	from	S	,	so

the	result 	of	the	t ransit ion	funct ion	N	is	the	union	of	subsets	of	S	s2t	M	(s).	Thus	it 	is	also	a	subset	of

An	isomorphic	automaton	is	also	determinist ic	if	there	is	at 	most	one	internal	state	{	it 	is	not	necessary	for	M	be	a	total	funct ion

from	S	!	2S	.

3

3.1.	THE	HAND	PROOF:	RABIN/SCOTT

23

corresponding	to	the	set	of	start ing	states	in	A.	Thus	there	are	two	quite	di	erent	de	nit ions	for	FSA,	although	Rabin	and	Scott

state	that	(p.120)	\ordinary	automata	are	special	cases	of	nondeterminist ic	automata,	and	we	shall	freely	ident ify	the	ordinary

machines	with	their	counterparts",	i.e.	nondeterminist ic	automata	with	exact ly	one	internal	state	in	M	for	each	state	and	symbol

pair.	De	nit ion	1	gave	a	determinist ic	automaton	for	which	the	state	reached	from	the	start 	state	by	tape	moves	is	direct ly

recursively	computable	because	the	range	of	M	is	exact ly	one	of	the	domain	elements	of	M	.	In	De	nit ion	9	the	range	of	M	is	a

set	of	states,	but	the	corresponding	domain	element	is	just 	a	state,	so	that	a	simple	recursive	computat ion	is	not	applicable.

This	second	automaton	is	nondeterminist ic,	but 	special	instances	{	with	only	singleton	sets	in	the	range	of	M	{	are	determinist ic.

The	constructed	automaton	from	De	nit ion	11	is	determinist ic	in	the	sense	of	De	nit ion	1.	There	are	subt le	di	erences	between

the	two	de	nit ions,	speci	cally	the	start ing	states	{	a	single	state	or	a	set 	of	states	{	and	the	signature	of	the	t ransit ion	funct ion.

One	de	nit ion	is	direct ly	composable	to	determine	M	(M	(s,	1),	2),	the	other	is	not.	If	De	nit ion	9	were	to	extend	the	domain

component	of	M	to	be	a	set	of	states	and	to	change	the	start 	from	a	state	to	a	set 	of	states,	an	automaton	would	be	obtained

that	is	direct ly	recursively	computable	for	both	nondeterminist ic	and	determinist ic	automata.	This	will	be	the	de	nit ion	used	in	the

mechanical	proof	in	Sect ion	3.2.	Rabin	and	Scott 's	proof	for	the	equivalence	of	the	automata	A	and	D(A)	is	as	follows.	Note	that

in	this	proof,	only	the	successful	paths	through	the	NFSA	for	a	tape	are	considered.	Actually,	as	will	be	shown	in	the	mechanical

proof,	a	more	general	theorem	is	the	case	{	all	paths	for	a	tape	through	a	NFSA	are	exact ly	mirrored	in	the	DFSA,	in	as	far	as

they	are	de	ned	in	the	NFSA,	and	thus	if	a	path	reaches	a	nal	state	in	the	NFSA	it 	will	also	reach	a	nal	state	in	the	corresponding

DFSA.

S	and	a	member	of	the	power	set 	of	S	.	The	start ing	state	is	that 	element	of	the	power	set

Theorem	11	If	A	is	a	nondeterminist ic	automaton,	then	T	(A)	=	T	(D(A)).

Proof:	Assume	rst 	that 	a	tape	x	=	0	1	:	:	:	n;1	is	in	T	(A)	and	let 	s0	s1	:	:	:	sn	be	a	sequence	of	internal	states	sat isfying	the
condit ions	of	De	nit ion	10.	We	show	by	induct ion	that	for	k	n,	sk	is	in	N	(t0	0xk).	For	k	=	0	N	(t0	0xk)	=	N	(to)	=	t0	=	S0	and	we

were	given	that	s0	is	in	S0	.

At	this	point 	the	t rivial	step	is	missing	that	if	s0	is	in	F,	then	S0	will	be	a	member	of	G,	as	it 	contains	at 	least 	one	member	of	F,

and	thus	condit ion	(iii)	of	De	nit ion	10	holds.	Assume	the	result 	for	k	;	1.	By	de	nit ion,	N	(t0	0xk)	=	N	(N	(t0	0xk;1)	k;1).	But	we
have	assumed	sk;1	is	in	N	(t0	0xk;1)	so	that	from	the	de	nit ion	of	N	we	have	M	(sk;1	k;1)	N	(t0	0xk).	However,	sk	is	in	M	(sk;1
k;1),	and	so	the	result 	is	established.	In	part icular	sn	is	in	N	(t0	0xn)	=	N	(t0	x),	and	since	sn	is	in	F,	we	have	N	(t0	x)	in	G,	which
proves	that	x	is	in	T	(D(A)).	Hence	we	have	shown	that	T	(A)	T	(D(A))	This	is	very	similar	to	the	mechanical	proof	as	conducted

below.	The	authors	use	in	the	proof,	but 	surely	is	meant	here.

24

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Assume	next	that 	a	tape	x	=	0	1	:	:	:	n	is	in	T	(D(A)).	Let 	for	each	k	n	tk	=	N	(t0	0xk).	We	shall	work	backwards.	First ,	we	know

that	tn	is	in	G.	Let	then	sn	be	any	internal	state	of	A	such	that	sn	is	in	tn	and	sn	is	in	F	.	This	is	quite	a	hidden	existent ial	quant i

cat ion	{	sn	is	any	of	the	states	from	tn	\	F	.	The	intersect ion	is	not	empty,	as	tn	2	G	has	been	assumed,	and	all	elements	of	G

must	have	a	non-empty	intersect ion	with	F	.	This	comes	to	light 	in	the	mechanical	proof	in	lemmata	such	as	member-dstate-

dfsa-final-states.	The	proof	cont inues	with	a	sort 	of	backwards	induct ion	argument.	Since	sn	is	in	tn	=	N	(t0	0xn)	=	N	(tn;1	n;1)
we	have	from	the	de	nit ion	of	N	that	sn	is	in	M	(sn;1	n;1)	for	some	sn;1	in	tn;1	.	But	tn;1	=	N	(t0	0xn;1)	=	N	(tn;2	n;2)	so	that
sn;1	is	in	M	(sn;2	n;2)	for	some	sn;2	in	tn;2	.	Cont inuing	in	this	way	we	may	obtain	a	sequence,	sn	sn;1	sn;2	:	:	:	s0	such	that	sk	is
in	tk	sk	is	in	M	(sk;1	k;i),	for	k	>	0	and	sn	is	in	F	.	Since	t0	=	S0,	we	also	have	s0	in	S0,	which	proves	that	x	is	in	T	(A).	Thus,	T
(D(A))	T	(A),	which	completes	the	proof.	In	Sippu	and	Soisalon-Soininen	SSS88,	p.88-89]	there	is	a	similar	proof	suggested.

There	the	determinist ic	t ransit ion	funct ion	is	named	GOTO,	as	it 	is	when	used	to	construct 	the	viable	pre	x	recognizer	for	an	LR-

Parser.

3.2	A	Construct ive	Proof

Rabin	and	Scott 	made	use	of	existent ial	quant i	cat ion	in	their	proof	of	the	automaton	equivalence.	The	basic	version	of	the

Boyer-Moore	theorem	prover	does	not	provide	existent ial	quant i	cat ion4.	My	intent	is	to	do	the	proof	completely	from	rst

principles	without	resort ing	to	such	\higher"	constructs.	Sect ion	3.3	will	describe	a	proof	using	explicit 	quant i	cat ion	as	conducted

by	a	researcher	at 	CLInc.	The	rst 	implementat ion	at tempt	of	the	Rabin/Scott 	de	nit ions	was	di	cult .	Because	of	the	non-

composability	problem	of	the	t ransit ion	funct ion	and	the	confusion	over	whether	the	start 	state	should	be	just 	a	state	or	a	set 	of

states,	it 	was	not	possible	to	prove	anything	about	the	implemented	de	nit ions.	Only	after	observing	the	changes	necessary	to

make	determinist ic	automata	a	special	case	of	nondeterminist ic	ones	{	rst 	de	ning	the	transit ion	funct ion	on	a	set	of	states	and	a

symbol	to	return	a	set	of	states	and	then	beginning	with	a	set 	of	states	{	was	it 	possible	to	prove	anything	interest ing.	This	was

now	possible	because	the	computat ion	funct ion	was	now	the	same	in	both	cases.	In	this	sect ion	I	will	rst 	de	ne	recursive

funct ions	to	compute	a	determinist ic	automaton	given	a	nondeterminist ic	one.	I	will	not 	further	discuss	the	implementat ions	that

did	not	work.	Then	the	proof	that 	the	result ing	automaton	is	determinist ic	will	be	given,	along	with	the	proof	that 	it 	is	equivalent

to	the	original	nondeterminist ic	automaton.

Although	there	is	an	extension	included	in	the	new	version	of	the	prover,	NQTHM-1992,	which	provides	a	mechanism	for

introducing	it .

4

3.2.	A	CONSTRUCTIVE	PROOF

25

First 	of	all,	de	nit ions	are	introduced	in	order	to	obtain	a	determinist ic	FSA	from	a	nondeterminist ic	one.	The	rst 	concept	needed

is	that	of	a	nite	state	automaton	constructor.	A	FSA	consists	of	an	alphabet,	a	set 	of	states,	a	set 	of	start 	states,	a	t ransit ion

table	and	a	set	of	nal	states.

Event:	Add	the	shell	fsa*	,	with	recognizer	funct ion	symbol	fsap*	and	5	accessors:	alphabet	,

3.2.1	Automaton	De	nit ion

with	type	restrict ion	(none-of)	and	default 	value	zero	states	,	with	type	restrict ion	(none-of)	and	default 	value	zero	starts	,	with

type	restrict ion	(none-of)	and	default 	value	zero	table	,	with	type	restrict ion	(none-of)	and	default 	value	zero	nals	,	with	type

restrict ion	(none-of)	and	default 	value	zero.	No	restrict ions	on	the	structure	of	the	components	will	be	made	in	the	shell	itself,	as

this	would	only	serve	to	complicate	the	proof.	Instead,	a	predicate	fsap	will	be	used	that	recognizes	\good"	FSAs.	That	is

something	which,	in	addit ion	to	being	a	fsa*,	has	the	propert ies	of	the	alphabet,	states,	and	starts	are	all	being	non-empty	lists,

and	of	the	start 	and	nal	states	being	sets	which	are	subsets	of	the	set	of	states.	This	de	nit ion	\grew"	during	the	development	of

the	proof,	and	the	conjuncts	are	not	well	structured.	Since	rearranging	port ions	of	a	de	nit ion	can	have	a	profound	impact	on	the

proof	{	a	proof	which	previously	succeeded	may	not	now	terminate5	{	the	\clean-up"	of	this	proof	has	been	limited	to	eliminat ion

of	events	that	were	unnecessary	in	the	proof.	Note	that	it 	was	not	necessary	for	the	alphabet	to	be	a	set.	One	may	read	the

listps	as	meaning	\non-empty	collect ions"	and	setp	as	meaning	\no	duplicate	elements	in	the	collect ion".

Definit ion:

fsap	(auto)	=	let 	al	be	alphabet	(auto),	st 	be	states	(auto),	s0	be	starts	(auto),	t r	be	table	(auto),	be	nals	(auto)	fsap*	(auto)

^	listp	(al)	^	listp	(st)	^	listp	(s0)	^	subsetp	(s0	,	st)	^	setp	(st)	^	setp	()	^	subsetp	(,	st)	endlet 	The	transit ion	table	does	not

need	a	shell.	It 	can	be	constructed	as	an	associat ion	list ,	which	is	a	list 	of	pairs.	The	prover	knows	a	few	facts	about	consult ing

such	a	table.	The	rst 	element	of	the	t ransit ion	table	pair	is	a	pair	consist ing	of	a	state	and	an	input	symbol.	The	second	element

is	a	list 	of	states	to	which	transit ions	exist .	This	construct ion	makes	it 	easier	to	extend	the	concept	to	include	-t ransit ions	on	the

one	hand,	and	it 	can	be	used	to	capture	both	the	determinist ic	and	the	nondeterminist ic	automata	on	the	other.	In	a

determinist ic	automaton,	the	list 	will	have	exact ly	one	element	in	it .	Selector	funct ions	on	a	t ransit ion	table	are	also	de	ned.

Definit ion:	mk-transit ion	(state	,	input	,	nexts)	=	cons	(cons	(state	,	input),	nexts)

A	simple	example	of	this	is	the	proof	given	in	sect ion	2.6.4.	Just 	changing	the	name	of	the	variable	z	to	y	results	in	an	in	nite

rewrite	chain.

5

in

26

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Definit ion:	state	(t rans)	=	caar	(t rans)	Definit ion:	input	(t rans)	=	cdar	(t rans)	Definit ion:	nexts	(t rans)	=	cdr	(t rans)

A	typical	t ransit ion	from	state	q	to	any	of	states	q	,	r,	or	s	on	input	a	would	be	expressed	as	(mk-transit ion	'q	'a	'(q	r	s))	which	is

just '	((q	.	a)	.	(q	r	s))	One	of	the	only	errors	found	by	the	prover	in	my	construct ion	algorithm	implementat ion	was	here	{	the

select ion	funct ions	for	state	and	input	had	been	exchanged	in	one	of	the	funct ions.	This	led	to	the	prover	not	being	able	to	prove

anything	interest ing	about	the	implementat ion.	The	other	error,	a	minor	one,	concerned	the	behavior	of	the	system	when

presented	with	an	empty	nondeterminist ic	table.	A	predicate	is	also	needed	that	recognizes	a	\well-formed"	t ransit ion.	That	is

one	where	the	input	is	a	member	of	the	alphabet,	and	the	states	and	all	the	elements	of	nexts	are	members	of	states.	The

nexts	list 	must	also	be	a	proper	list 	(plistp).	This	means	it 	must	either	be	empty	or	a	list ,	and	never	just 	a	literal	atom.

Definit ion:

t ransit ionp	(t rans	,	alphabet	,	states)	=	((input	(t rans)	2	alphabet)	^	(state	(t rans)	2	states)	^	subsetp	(nexts	(t rans),	states)

^	plistp	(nexts	(t rans)))	With	the	previous	predicate	the	property	of	a	t ransit ion	table	being	well	formed	can	be	stated:	if	all	the

entries	are	t ransit ions	with	respect	to	the	alphabet	and	the	set	of	states,	then	the	table	is	well	formed.	That	means	that	there

are	no	otherwise	well-formed	transit ions	that	contain	states	or	symbols	outside	the	de	ned	states	and	alphabet.

Definit ion:

wf-table	(table	,	alphabet	,	states)	=	if	table	'	6	nil	then	table	=	nil	else	t ransit ionp	(car	(table),	alphabet	,	states)	^	wf-table	(cdr

(table),	alphabet	,	states)	endif	A	nondeterminist ic	nite	state	automaton	is	something	that	is	both	a	nite	state	automaton	and

has	a	t ransit ion	table	which	is	well	formed	with	respect	to	the	alphabet	and	the	set	of	states.

Definit ion:	ndfsap	(a)	=	(fsap	(a)	^	wf-table	(table	(a),	alphabet	(a),	states	(a)))

3.2.2	Construct ion	of	the	Determinist ic	Table

The	determinist ic	t ransit ion	table	is	constructed	from	the	nondeterminist ic	t ransit ion	table	by	rst 	forming	the	power	set 	of	the

nondeterminist ic	states,	and	then	for	all	elements	in	the	power	set ,	determining	the	set	of	nondeterminist ic	states	which	are

reachable	from	this	state	for	each	symbol	in	the	alphabet.	This	set 	of	reachable	states	is	by	de	nit ion	also	a	member	of	the

power	set ,	and	thus	also	a	determinist ic	state.

6	Note	the	use	here	and	in	subsequent	de	nit ions	of	the	relat ional	operator	'	used	instead	of	=	with	the	literal	nil.	In	the	Boyer-

Moore	logic	the	literal	atom	nil	is	not	equal	to	any	other	literal	atom	and	it 	is	not	a	list .	This	operator	means	\if	a	is	not	a	list 	...

"but	must	be	expressed	as	\if	a	is	nil	or	any	other	literal	atom	..."	.

3.2.	A	CONSTRUCTIVE	PROOF

27

This	construct ion	algorithm	is	exponent ial	in	t ime	and	space.	There	are	a	number	of	opt imizat ions	that	can	be	envisioned	for	it ,

the	most	obvious	one	being	the	removal	of	all	unused	and	unreachable	determinist ic	states.	My	goal,	however,	is	to	rst 	prove

this	algorithm	to	be	correct 	{	then	for	any	opt imizat ion	one	can	at tempt	to	prove	that	it 	preserves	the	integrity	of	the	t ransit ion

system.	The	funct ion	next-states	determines	the	next	states	in	a	table	for	a	step	from	a	speci	c	state	on	a	speci	c	symbol.	That

is,	the	rst 	entry	in	the	table	for	the	state/symbol	combinat ion	is	determined.	It 	returns	nil	if	no	entry	in	the	table	is	found.

Definit ion:

next-states	(table	,	st 	,	a)	=	if	table	'	nil	then	nil	elseif	cons	(st 	,	a)	=	caar	(table)	then	nexts	(car	(table))	else	next-states	(cdr

(table),	st 	,	a)	endif	During	the	de	nit ion	phase	I	proved	some	\sanity"-theorems	about	the	funct ions	that	were	de	ned	to

convince	myself	that 	I	had	indeed	implemented	the	correct 	funct ion.	In	this	case	I	wanted	to	be	sure	that	if	M	is	a	well-formed

table,	then	the	result 	of	next-states	is	a	subset	of	nstates.	This	proof	is	easily	completed	by	the	prover.

Theorem:	subsetp-next-states

wf-table	(m	,	alphabet	,	nstates)	!	subsetp	(next-states	(m	,	state	,	symbol),	nstates)

A	predicate	definedp	is	used	to	determine	when	a	(state	.	symbol)	pair	is	de	ned	in	a	table.	This	is	useful	in	the	proof	of	two

further	lemmata.	The	rst 	states	that	nil	is	the	result 	of	next-states	when	the	pair	is	not	de	ned,	and	the	second	describes	the

relat ionship	between	next-states	and	the	ground-zero	funct ion	append.

Definit ion:

de	nedp	(x	,	table)	=	if	table	'	nil	then	f	else	(x	=	caar	(table))	_	de	nedp	(x	,	cdr	(table))	endif

Theorem:	non-de	nedp-next-state	Theorem:	next-states-append

(:	de	nedp	(cons	(st 	,	a),	table))	!	(next-states	(table	,	st 	,	a)	=	nil)	next-states	(append	(a	,	b),	s	,	x)	=	if	de	nedp	(cons	(s	,	x),

a)	then	next-states	(a	,	s	,	x)	else	next-states	(b	,	s	,	x)	endif

The	determinist ic	next	state	is	de	ned	to	be	the	closure	of	dstate	in	M	over	symbol.	This	is	the	union	of	all	of	the	nondeterminist ic

next	states	for	each	(nondeterminist ic)	state	represented	in	the	determinist ic	one.

Definit ion:

dfsa-next-state	(dstate	,	symbol	,	m)	=	if	dstate	'	nil	then	nil	else	next-states	(m	,	car	(dstate),	symbol)	dfsa-next-state	(cdr

(dstate),	symbol	,	m)	endif

28

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Note	that	the	NQTHM	funct ion	union()	is	not	the	set-theoret ic	union	one	would	like	it 	to	be.	Only	if	the	second	parameter	is	a	set

is	the	result 	a	set .	This	is	because	of	the	recursive	structure	of	the	funct ion	{	the	second	parameter	is	included	in	the	result

untested.	I	include	it 	here	for	documentat ion	purposes.	Definit ion:	(x	y)	=	if	listp	(x)	then	if	car	(x)	2	y	then	cdr	(x)	y	else	cons

(car	(x),	cdr	(x)	y)	endif	else	y	endif	If	the	t ransit ion	table	M	is	a	well-formed	table	and	a	determinist ic	state	is	a	subset	of	the

nondeterminist ic	states,	then	the	determinist ic	next	state	will	also	be	a	subset	of	the	nondeterminist ic	states,	and	thus	also	a

member	of	the	power	set .	Theorem:	subsetp-dfsa-next-state	(wf-table	(m	,	alphabet	,	nstates)	^	subsetp	(dstate	,	nstates))	!

subsetp	(dfsa-next-state	(dstate	,	symbol	,	m),	nstates)	One	important	point 	has	been	ignored:	in	the	hand	proof,	set 	theory	is

available	and	thus	power	sets	are	t rivial	to	use.	The	theorem	prover,	however,	does	not	have	\real"	set 	theory	built 	in	{	it 	has	to

be	modeled	by	lists.	This	does	not	cause	a	problem	for	implement ing	funct ions	for	determining	membership	or	subset	propert ies,

but	it 	is	indeed	a	problem	for	determining	set	equality	{	the	ordering	of	the	elements	induced	by	the	list 	precludes	modeling	it 	by

list 	equality.	A	number	of	tact ics	were	tried	to	get	around	this	problem,	such	as	de	ning	a	funct ion	set-equals.	This	introduces	the

problem	that,	while	the	prover	knows	quite	a	lot 	about	equality	and	equat ional	reasoning,	it 	knows	absolutely	nothing	about	using

set-equals	unless	it 	is	told.	Young	suggested	using	a	ordering	funct ion	to	normalize	the	sets.	When	a	determinist ic	next	state

has	been	constructed,	it 	is	then	ordered	according	to	a	speci	c	ordering.	The	power	set 	itself,	all-subbags,	is	also	not	really	the

power	set ,	but 	as	the	name	suggests	the	collect ion	of	all	subbags	of	a	base	list 	represent ing	a	bag.	It 	will	be	proven	that,	should

the	base	actually	be	a	set,	then	all-subbags	will	also	return	a	set.	The	elements	of	this	\power	set"	will,	by	the	manner	in	which

they	are	constructed,	be	ordered	as	in	the	base.	So	the	base,	in	this	case	the	list 	of	the	nondeterminist ic	states,	will	be	used	as

the	ordering	base	in	construct ing	the	determinist ic	states	so	that	simple	list 	membership	and	equality	can	be	used.	The	funct ion

consl	conses	x	onto	each	member	of	the	list 	l.	The	funct ion	all-subbags	rst 	constructs	the	subbags	for	the	tail	of	the	list ,	then

conses	x	onto	the	front	of	each	element	of	the	tail	subbags	list ,	and	then	takes	the	union	of	both.	Definit ion:	consl	(x	,	l)	=	if	listp

(l)	then	cons	(cons	(x	,	car	(l)),	consl	(x	,	cdr	(l)))

else	nil	endif

Definit ion:

all-subbags	(l)	=	if	listp	(l)	then	let 	x	be	all-subbags	(cdr	(l))

x	consl	(car	(l),	x)	endlet 	else	list 	(nil)	endif

in

3.2.	A	CONSTRUCTIVE	PROOF

29

The	ordering	funct ion	order	orders	the	elements	of	x	according	to	the	order	of	lst .	lst 	determines	a	nite	total	order	for	x,	by

select ing	out	of	lst 	those	elements	which	are	members	of	x.	If	x	contained	any	elements	that	were	not	in	lst ,	they	will	be

eliminated	in	the	result .

Definit ion:

order	(x	,	lst)	=	if	lst 	'	nil	then	nil	elseif	car	(lst)	2	x	then	cons	(car	(lst),	order	(x	,	cdr	(lst)))	else	order	(x	,	cdr	(lst))	endif	One

determinist ic	t ransit ion	can	now	be	de	ned	to	be	a	t ransit ion	from	a	determinist ic	state	dstate	and	a	symbol,	to	the	ordering	of

the	determinist ic	next	state	on	the	basis	of	the	nondeterminist ic	next	states.

Definit ion:

dfsa-next-t ransit ion	(dstate	,	symbol	,	nfsa-table	,	nfsa-states)	=	mk-transit ion	(dstate	,	symbol	,	list 	(order	(dfsa-next-state

(dstate	,	symbol	,	nfsa-table),	nfsa-states)))	The	previous	funct ion,	which	constructs	one	transit ion	for	a	determinist ic	state	and

a	symbol,	is	then	used	to	cdr	down	both	the	set	of	determinist ic	states	and	the	alphabet.

Definit ion:

dfsa-table-for-symbol	(symbol	,	dstates	,	nfsa-table	,	nfsa-states)	=	if	dstates	'nil	then	nil	else	cons	(dfsa-next-t ransit ion	(car

(dstates),	symbol	,	nfsa-table	,	nfsa-states),	dfsa-table-for-symbol	(symbol	,	cdr	(dstates),	nfsa-table	,	nfsa-states))

endif

Definit ion:

dfsa-table	(alphabet	,	states	,	nfsa-table	,	nfsa-states)	=	if	alphabet '	nil	then	nil	else	append	(dfsa-table-for-symbol	(car

(alphabet),	states	,	nfsa-table	,	nfsa-states),	dfsa-table	(cdr	(alphabet),	states	,	nfsa-table	,	nfsa-states))	endif

3.2.3	The	Determinist ic	Automaton

In	addit ion	to	the	transit ion	table,	the	set	of	states	and	the	set	of	nal	states	has	to	be	constructed	for	the	determinist ic

automaton.	The	alphabet,	of	course,	remains	the	same.	The	start ing	state	in	the	determinist ic	automaton	is	that 	element	of	the

power	set 	that 	contains	exact ly	the	start ing	states	of	the	nondeterminist ic	automaton.	Since	the	NFSA	could	have	more	than

one	start ing	state,	and	thus	be	a	set	of	states,	the	start ing	state	for	FSAs	has	been	de	ned	to	be	a	set	as	discussed	above.	It

must	be	shown	for	the	determinist ic	automaton	that	this	set 	contains	just 	one	element.	This	is	t rivial	by	de	nit ion.

Definit ion:

dfsa-starts	(l	,	nstates)	=	if	l	'	nil	then	nil	else	list 	(order	(l	,	nstates))	endif

30

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

The	nal	states	in	the	determinist ic	automaton	are	those	elements	of	the	set	of	determinist ic	states	which	contain	at 	least 	one

nal	state	of	the	nondeterminist ic	automaton.	At	least 	three	di	erent	implementat ions	were	tried	before	nding	one	about	which	it

was	possible	to	prove	non-trivial	lemmata.	The	rst ,	and	most	obvious,	implementat ion	was	to	use	the	funct ion	disjoint 	from	a

library	of	set-theoret ic	de	nit ions	and	lemmata	used	by	some	of	the	researchers	at 	Computat ional	Logic.	This	just 	caused	chaos,

as	disjoint 	worked	using	a	funct ion	delete	and	there	were	not	many	lemmata	known	about	either	funct ion.	The	next	at tempt	was

to	use	a	funct ion	intersect ion	from	the	same	library,	and	de	ne	a	determinist ic	nal	state	to	be	one	with	a	non-empty	intersect ion

with	the	nondeterminist ic	nal	states.	This	was	only	half	as	chaot ic,	but 	involved	trying	to	prove	the	listp-ness	of	a	result .	Since

there	are	many	collect ions	of	hypotheses	from	which	the	listp-ness	of	a	list 	results,	this	spawned	too	many	at tempts	to	prove

totally	irrelevant	results.	Eventually	it 	was	seen	that	it 	was	not	necessary	to	construct 	the	ent ire	intersect ion,	but	only	to	nd	a

witness	to	the	fact 	that 	the	intersect ion	is	not	empty.	The	funct ion	some-member	searches	down	the	rst 	list 	for	such	a	witness.

If	one	is	found,	T	is	returned,	otherwise	F.	This	turns	out	to	be	a	typical	way	to	handle	such	a	problem	in	NQTHM	{	nd	a	witness

to	the	existent ially	postulated	relat ionship.

Definit ion:

some-member	(l1	,	l2)	=	if	l1	'	nil	then	f	elseif	car	(l1)	2	l2	then	t 	else	some-member	(cdr	(l1),	l2)	endif

Definit ion:

dfsa-	nal-states	(dstates	,	nfsa-	nals)	=	if	dstates	'	nil	then	nil	elseif	some-member	(car	(dstates),	nfsa-	nals)	then	cons	(car

(dstates),	dfsa-	nal-states	(cdr	(dstates),	nfsa-	nals))	else	dfsa-	nal-states	(cdr	(dstates),	nfsa-	nals)	endif	The	construct ion

of	the	determinist ic	automaton	is	implemented	in	the	following	funct ion,	which	applies	the	funct ions	dfsa-starts,	dfsa-table,	and

dfsa-final-states	to	appropriate	components	of	the	nondeterminist ic	automaton.

Definit ion:

generate-dfsa	(nfsa)	=	let 	nstates	be	states	(nfsa)

in	let 	dstates	be	all-subbags	(nstates),	alphabet	be	alphabet	(nfsa)	in

fsa*	(alphabet	,	dstates	,	dfsa-starts	(starts	(nfsa),	nstates),	dfsa-table	(alphabet	,	dstates	,	table	(nfsa),	nstates),	dfsa-	nal-

states	(dstates	,	nals	(nfsa)))	endlet 	endlet

3.2.4	The	Proof:	Basic	Theorems

The	proof	is	divided	into	four	sect ions:	some	basic	theorems,	the	proof	that 	the	generated	automaton	is	determinist ic,	the	proof

that	the	determinist ic	one	simulates	the	nondeterminist ic

3.2.	A	CONSTRUCTIVE	PROOF

31

one,	and	the	proof	that 	the	nondeterminist ic	one	simulates	the	determinist ic	one,	and	thus	that	they	are	equivalent.	The	rst 	part

of	the	proof	contains	a	number	of	lemmata	about	the	basic	funct ions	and	their	respect ive	interact ions.	An	exact	statement	of

the	funct ions	can	be	found	at 	the	URL	given	on	page	3.	A	few	of	the	more	basic	lemmata	about	sets	and	subsets	were	adapted

from	some	of	the	libraries	that	various	researchers	at 	Computat ional	Logic	have	constructed.	The	full	library	was	used	during	the

rst 	part 	of	the	proof	at tempt,	but	since	that	slowed	down	the	proof	considerably	as	every	lemma	must	be	considered,	only	those

lemmata	necessary	for	the	proof	were	extracted.	This	had	the	added	advantage	that	now	some	proofs	would	go	through	that

had	not	before	{	some	of	the	many	rewrite	rules	had	red	and	moved	the	proof	down	a	completely	wrong	path	that	could	not	be

completed.	The	funct ion	setp	used	in	this	proof	is	slight ly	di	erent	that 	the	one	used	by	Young	in	his	proof	{	if	l	is	not	a	list 	then	I

consider	l	to	be	a	set	he	only	considers	it 	to	be	a	set	if	it 	is	actually	nil	and	not	a	literal	atom.	The	lemmata	from	the	libraries

express	rewrite	rules	for	the	following	concerns:	The	relat ionship	of	setp	with	cons,	consl,	union,	and	a	combinat ion	of	union	and

consl

The	relat ionship	between	member	and	consl	The	fact 	that 	nothing	can	be	a	member	of	an	empty	list 	expressed	in	two	di	erent

ways	The	distribut ivity	of	member	through	union	and	subsetp	through	union	The	re	exivity	of	subsetp	A	list 	is	a	subset	of	the

union	of	itself	with	anything	as	well	as	of	the	list 	result ing	from	consing	anything	onto	it 	consing	an	element	onto	a	list 	extends	the

length	by	one	If	a	list 	is	a	proper	list ,	that 	is,	if	it 	consists	of	at 	least 	one	cons	or	it 	is	the	literal	atom	nil,	consing	an	element	onto

it 	will	not 	change	this	property	The	funct ion	member	is	t ransit ive	in	the	sense	that	if	a	2	b	and	b	c	then	a	2	c	The	witness	funct ion

some-member	returns	t rue	if	there	exists	an	element	which	is	a	member	of	both	lists	The	distribut ivity	of	some-member	through

subsetp	Theorems	about	the	power	set 	funct ion,	all-subbags:	The	power	set 	is	always	a	list ,	nil	is	always	a	member	of	it

(represent ing	the	empty	set),	all	singleton	lists	of	elements	of	the	basis	set 	are	members	of	the	power	set ,	all	elements	of	the

power	set 	are	subsets	of	the	basis,	and	if	the	basis	is	a	proper	set ,	then	the	power	set 	is	as	well.	The	order	funct ion	that	was

introduced	for	simulat ing	set	equality	created	the	need	for	many	rewrite	rules	pertaining	to	its	relat ionships	with	other	funct ions.

All	in	all,	there	were	many	more	lemmata	proved	about	order	during	the	proof	e	ort 	than	are	actually	included	in	the	proof	{	some

of	the	theorems	that	had	been	proven	because	they	were	provable	and	because	they	rounded	out	\order	theory"	turned	out	to

be	very	bad	rewrite	rules.	One	in	part icular	which	related	member,	order,	and	all-subbags,	turned	out	to	\	re"	at 	almost	every

proof	step.	An	amazing	number	of	lemmata	were	provable	about	order	despite	using	all-subbags,	as	there	were	other	lemmata

to	help	eliminate	it 	again.	When	this	was	detected

32

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

while	\cleaning	up"	the	proof	and	the	bad	rewrite	rule	was	disabled	after	it 	served	its	purpose	proving	another	theorem,	the

running	t ime	for	the	proof	dropped	from	20	minutes	to	5	minutes,	and	another	dozen	rewrite	rules	turned	out	to	be	unnecessary.

The	following	theorems,	however,	are	necessary	for	the	proof	and	provable:	preserves	membership	An	element	is	only	a

member	of	the	result 	of	ordering	if	it 	is	an	element	in	both	the	list 	to	be	ordered	and	the	ordering	list 	If	ordering	leaves	a	list

intact ,	then	it 	is	a	member	of	the	power	set 	of	the	ordering	list ,	i.e.	all	members	of	the	power	set 	are	ordered	according	to	the

basis	set 	(this	was	the	bad	rewrite	rule)	Anything	that	is	ordered	on	a	basis	is	a	member	of	the	power	set 	of	that 	basis	If	there	is

some	member	in	common	between	some	ordering	and	another	set ,	then	there	is	st ill	a	common	member	if	something	is	consed

onto	the	list 	to	be	ordered	An	ordered	list 	is	a	subset	of	the	ordering	of	anything	consed	onto	the	list 	before	ordering	If	there	is	a

common	member	between	an	ordered	list 	and	another	one,	then	the	unordered	list 	has	a	common	member	also	A	key	lemma:	if

a	and	b	have	a	common	member	and	b	c,	then	the	ordering	of	a	by	c	will	have	a	common	member	with	b.

order

3.2.5	The	Proof:	The	Generated	Automaton	is	Determinist ic

In	order	to	prove	that	the	generated	automaton	is	determinist ic,	i.e.	that 	there	is	at 	most	one	following	state	for	each	state	and

symbol	pair	in	the	generated	table,	it 	will	have	to	be	proven	that	each	step	is	determinist ic.	The	property	of	being	determinist ic	is

formulated	in	the	predicate	dfsap	and	the	theorem	is	that	the	generated	DFSA	has	this	property.	dfsap	states	that	an

automaton	is	determinist ic	if	its	table	is,	and	that	a	table	is	determinist ic	when	all	of	the	t ransit ions	are	determinist ic,	i.e.	have	0

or	1	elements	in	the	nexts	list .	determinist ic-t ransit ion	(t r	,	alphabet	,	states)	=	(t ransit ionp	(t r	,	alphabet	,	states)	^	(length

(nexts	(t r))

Definit ion:	Definit ion:

1))

determinist ic-table	(table	,	alphabet	,	states)	=	if	table	'	nil	then	t 	else	determinist ic-t ransit ion	(car	(table),	alphabet	,	states)	^

determinist ic-table	(cdr	(table),	alphabet	,	states)	endif

Definit ion:

dfsap	(d)	=	(fsap	(d)	^	determinist ic-table	(table	(d),	alphabet	(d),	states	(d)))

Theorem:	dfsap-generate-dfsa

ndfsap	(a)	!	dfsap	(generate-dfsa	(a))

In	order	to	prove	the	theorem	dfsap-generate-dfsa,	the	following	lemmata	are	necessary.	It 	must	be	shown	that	the	generated

states,	nal	states	and	start 	states	ful	ll	the	fsap	predicate,	i.e.	are	sets	and	that	the	nals	are	a	subset	of	the	states,	etc.

3.2.	A	CONSTRUCTIVE	PROOF

Theorem:	dfsa-	nal-states-subsetp

33

subsetp	(dfsa-	nal-states	(dstates	,	n	nals),	dstates)	Theorem:	dfsa-	nal-states-member	(z	2	dfsa-	nal-states	(x	,	y))	!	(z	2	x)

Theorem:	setp-dfsa-	nal-states	setp	(dstates)	!	setp	(dfsa-	nal-states	(dstates	,	n	nals))	The	lemma	dfsa-final-states-member

is	such	a	bad	rewrite	rule	(it 	is	applied	every	t ime	member	occurs	in	a	term)	that	it 	must	be	immediately	disabled	and	only	used

for	the	proof	of	the	nal	states	being	a	proper	set .	It 	can	now	be	shown	that	the	determist ic-table	property	distributes	through

append:	Theorem:	determinist ic-table-append	determinist ic-table	(append	(a	,	b),	alphabet	,	states)	=	(determinist ic-table	(a	,

alphabet	,	states)	^	determinist ic-table	(b	,	alphabet	,	states))	The	following	auxilliary	lemma	is	a	bit 	strange	in	that	the

hypothesis	is	weaker	than	one	would	expect	{	it 	states	that	the	determinist ic	states	are	a	subset	of	the	power	set 	of	the

nondeterminist ic	states,	when	in	fact 	they	are	equal.	In	the	equality	case,	however,	the	hypothesis	is	used	by	the	prover	in	an

ent irely	di	erent	way.	The	prover	could	not	be	convinced	by	any	means	to	at tempt	the	induct ion	over	the	construct ion	of	the

determinist ic	states.	Using	the	subsetp	predicate	automat ically	sets	up	the	induct ion	so	that	this	lemma	can	be	proven	and	used

to	prove	that	the	table	for	one	symbol	is	determinist ic.	Theorem:	determinist ic-table-dfsa-table-for-symbol1	(wf-table	(m	,

alphabet	,	nstates)	^	subsetp	(dstates	,	all-subbags	(nstates))	^	(symbol	2	alphabet))	!	determinist ic-table	(dfsa-table-for-

symbol	(symbol	,	dstates	,	m	,	nstates),	alphabet	,	all-subbags	(nstates))	Theorem:	determinist ic-table-dfsa-table-for-symbol

let 	dstates	be	all-subbags	(nstates)	((symbol	2	alphabet)	^	wf-table	(m	,	alphabet	,	nstates))	!	determinist ic-table	(dfsa-table-

for-symbol	(symbol	,	dstates	,m	,	nstates),	alphabet	,	dstates)	endlet 	The	same	thing	is	repeated	for	the	alphabet	{	the

nondeterminist ic	alphabet	and	the	determinist ic	one	are	the	same,	but	the	proof	will	only	go	through	if	the	nondeterminist ic	one	is

a	subset	of	the	determinist ic	one.	Theorem:	determinist ic-table-dfsa-table	(wf-table	(m	,	alphabet	,	nstates)	^	subsetp	(x	,

alphabet))	!	determinist ic-table	(dfsa-table	(x	,	all-subbags	(nstates),	m	,	nstates),	alphabet	,	all-subbags	(nstates))	The

lemmata	proven	above	are	su	cient	to	prove	the	theorem	dfsap-generate-dfsa	as	stated,	without	the	introduct ion	of	any

qualifying	hypotheses.

in

34

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

3.2.6	The	Proof:	The	DFSA	Accepts	if	the	NFSA	does

In	order	to	show	that	the	automata	are	equivalent,	it 	must	be	shown	that	if	the	NFSA	accepts	a	tape,	then	the	generated

DFSA	does	as	well,	and	vice	versa.	In	this	sect ion,	the	rst 	implicat ion	is	proven.

Theorem:	nfsa-accepts=>dfsa-accepts

accept	(nfsa	,	tape)	!	accept	(generate-dfsa	(nfsa),	tape)

It 	can	soon	be	seen	that	this	is	not	a	theorem	if	the	table	is	not	well	formed.	The	predicate	stat ing	that	the	nfsa	is	a	proper

nondeterminist ic	automaton	(ndfsap)	is	added	to	the	hypothesis,	and	a	number	of	lemmata	can	be	proven	about	the	relat ionship

of	the	table	construct ing	funct ions	with	wf-table.	However,	many	of	them	will	disappear	by	the	end	of	the	proof	as	they	are	not

really	needed.	Of	vital	importance	is	the	quest ion	of	acceptance:	what	does	it 	mean	for	a	tape	to	be	accepted	by	a	nite	state

automaton?	The	rst 	acceptance	funct ion	was	de	ned	close	to	the	proof	by	Rabin	and	Scott :	A	funct ion	was	de	ned	to	collect 	up

the	following	states	according	to	the	table	for	a	set 	of	states	and	a	symbol,	and	this	was	used	for	running	the	automaton.	The

rest	of	the	tape	is	then	run	from	the	set	of	states	reachable	from	the	start ing	states	for	the	rst 	symbol	in	the	tape.	next-states-

list 	(table	,	states	,	a)	=	if	states	'nil	then	nil	else	next-states	(table	,	car	(states),	a)	next-states-list 	(table	,	cdr	(states),	a)

endif

Definit ion:	Definit ion:

run	(table	,	states	,	tape)	=	if	tape'	nil	then	states	elseif	states	'	nil	then	nil	else	run	(table	,	next-states-list 	(table	,	states	,	car

(tape)),	cdr	(tape))	endif	While	this	is	a	reasonable	and	understandable	statement	of	acceptance,	it 	is	not	at 	all	easy	to	prove

anything	about	it .	The	problem	seems	to	stem	from	want ing	to	prove	that,	at 	each	step	of	the	way,	the	nondeterminist ic	states

are	a	subset	of	the	determinist ic	state.	That	is	to	say,	the	components	of	the	determinist ic	state	are	nondeterminist ic	states.

The	start 	of	the	induct ion,	however	has	an	equality:	the	determinist ic	start 	state	is	equal	to	the	set	of	all	NFSA	start 	states.

equal	cannot	be	used	in	the	base	case	and	subsetp	in	the	induct ion	step,	even	if	subsetp	follows	from	equal	{	this	just 	cannot	be

mangled	to	t 	into	an	induct ion	scheme.	After	much	work	t rying	to	get	the	induct ion	scheme	right 	for	this	statement	of

acceptance,	another	statement	was	tried.	Acceptance	now	was	expressed	as	the	nals	not	being	disjoint 	with	the	set	of	states

result ing	of	running	the	table	on	the	complete	tape	from	the	starts,	i.e.	they	have	a	common	member.

Definit ion:

new-accept	(fsa	,	tape)	=	if	fsap	(fsa)	then	:	disjoint 	(run	(table	(fsa),	starts	(fsa),	tape),	nals	(fsa))

else	f	endif

3.2.	A	CONSTRUCTIVE	PROOF

35

This	was	intended	to	avoid	the	intermediate	steps	in	the	running	of	the	automaton,	and	just 	prove	something	about	the	nal

result .	The	problem	was	with	the	funct ion	disjoint ,	which	was	from	one	of	the	libraries.	Even	though	the	prover	knew	a	number	of

lemmata	about	disjoint ,	it 	was	not	enough.	The	more	that	was	proven,	the	more	complicated	the	proofs	became.	So	another

formulat ion	of	acceptance	was	tried:	when	the	intersect ion	of	the	states	reached	and	the	nal	states	is	a	list ,	i.e.	not 	empty,	then

a	tape	is	accepted.	Definit ion:	newer-accept	(fsa	,	tape)	=	if	fsap	(fsa)	then	listp	(intersect ion	(run	(table	(fsa),	starts	(fsa),

tape),	nals	(fsa)))

else	f	endif

Since	intersect ion	is	a	library	funct ion	with	a	simpler	recursive	structure,	it 	was	thought	that 	this	might	help,	but	exact ly	the	same

problems	were	encountered.	As	a	last 	resort 	I	observed	that	if	the	intersect ion	is	not	empty,	then	there	is	a	common	element,

so	I	de	ned	a	funct ion	to	nd	one	such	common	element	{	some-member.	This	was	a	key	turning	point 	in	the	proof	e	ort .

Definit ion:	newest-accept1	(table	,	states	,	nals	,	tape)	=	if	tape	'	nil	then	some-member	(states	,	nals)	else	newest-accept1

(table	,	next-states-list 	(table	,	states	,	car	(tape)),	nals	,	cdr	(tape))	endif	Definit ion:	newest-accept	(fsa	,	tape)	=	newest-

accept1	(table	(fsa)	,	starts	(fsa),	nals	(fsa),	tape)	This	funct ion	was	renamed	accept	and	the	proof	restarted	by	throwing

away	all	the	lemmata	proved	in	the	meant ime.	A	number	of	proofs	concerning	next-state-list 	are	suggested	by	the	proof	script .

It 	is	discovered	that	the	result 	of	next-state-list 	is	the	same	as	the	construct ion	funct ion	for	the	determinist ic	next	state	nder.

The	relat ionship	between	dfsa-next-t ransit ion	and	with	union	can	now	be	shown.	Theorem:	next-states-list -same-as-dfsa-next-

state	next-states-list 	(m	,	nstates	,	symbol)	=	dfsa-next-state	(nstates	,	symbol	,	m)	Theorem:	next-states-dfsa-table-for-

symbol	(dstate	2	dstates)	!	(next-states	(dfsa-table-for-symbol	(c,	dstates	,	ntab	,	d),	dstate	,	c)	=	nexts	(dfsa-next-t ransit ion

(dstate	,	c	,	ntab	,	d)))	Theorem:	dfsa-next-state-union	dfsa-next-state	(cons	(a	,	b),	c	,	d)	=	(next-states	(d	,	a	,	c)	dfsa-

next-state	(b	,	c	,	d))	The	lemma	order-final-states	was	discovered	to	be	necessary	by	working	with	PCNQTHM.	It 	was	rst

introduced	as	an	axiom,	and	is	a	key	lemma	in	the	proof.	It 	states	that	if	W	is	a	set 	of	states	that	has	at 	least 	one	member	that

is	in	the	nondeterminist ic	nal	states,	and	if	the	nal	states	are	all	members	of	the	nondeterminist ic	states,	then	the	ordering	of	W

on	the	NFSA-states	will	be	a	member	of	the	determinist ic	nal	states.	It 	is	an	instance	of	the	more	general	rule,	member-dstate-

dfsa-final-states,	which	expresses	the	relat ionship	between	the	nal	states	in	the	nondeterminist ic	and	the	determinist ic

automaton.

36

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Theorem:	member-dstate-dfsa-	nal-states	Theorem:	order-	nal-states

(some-member	(dstate	,	n	nals)	^	(dstate	2	dstates))	!	(dstate	2	dfsa-	nal-states	(dstates	,	n	nals))	(subsetp	(nfsa-	nals	,	nfsa-

states)	^	some-member	(w	,	nfsa-	nals))	!	(order	(w	,	nfsa-states)	2	dfsa-	nal-states	(all-subbags	(nfsa-states),	nfsa-	nals))

A	lemma	about	the	ordering	of	a	set 	being	a	subset	of	itself,	one	about	the	nondeterminist ic	next	states	being	a	subset	of	the

determinist ic	states	if	the	nondeterminist ic	start ing	state	is	a	member	of	the	determinist ic	start ing	state,	and	a	distribut ivity

lemma	of	subsetp	through	dfsa-next-state	are	also	necessary.

Theorem:	subsetp-order

subsetp	(order	(a	,	b),	a)

Theorem:	subsetp-next-states-2

(z	2	b)	!	subsetp	(next-states	(v	,	z	,	c),	dfsa-next-state	(b	,	c	,	v))	subsetp	(a	,	b)	!	subsetp	(dfsa-next-state	(a	,	c	,	v),	dfsa-

next-state	(b	,	c	,	v))

Theorem:	dfsa-next-state-distrib

The	lemma	order-dfsa-next-state-order	states	that	whether	or	not	a	state	is	ordered,	if	the	table	is	well	formed	and	the	state	is

a	subset	of	the	nondeterminist ic	states	(D),	then	the	ordering	of	the	result 	will	result 	in	the	same	list .	To	prove	this	key	lemma

the	proof	scheme	given	in	equal-order-subsetp	was	needed,	as	well	as	the	proof	of	each	direct ion	of	its	hypotheses.	The	one

direct ion	was	easy,	the	determinist ic	next	state	of	an	ordered	list 	is	always	a	subset	of	the	determinist ic	next	state	of	the

original	list .	The	other	direct ion	is	only	t rue	when	the	original	list 	is	a	subset	of	the	base	set	used	for	ordering.	However,	this	is	not

a	problem	as	this	fact 	is	easily	established.	An	explicit 	hint 	to	the	prover	is	necessary	to	force	it 	to	use	the	proof	scheme	and	the

appropriate	subst itut ions	for	the	free	variable	b.

Theorem:	equal-order-subsetp

(subsetp	(a	,	b)	^	subsetp	(b	,	a))	!	(order	(a	,	c)	=	order	(b	,	c))

Theorem:	subsetp-dfsa-next-state-1

subsetp	(dfsa-next-state	(order	(w	,	d),	c	,	v),	dfsa-next-state	(w	,	c	,	v))	subsetp	(dfsa-next-state	(order	(x	,	y),	c	,	v),	dfsa-

next-state	(order	(cons	(z	,	x),	y),	c	,	v))

Theorem:	subsetp-dfsa-next-state-2-helper	Theorem:	subsetp-dfsa-next-state-2

subsetp	(w	,	d)	!	subsetp	(dfsa-next-state	(w	,	c	,	v),	dfsa-next-state	(order	(w	,	d),	c	,	v))	(wf-table	(ntab	,	alphabet	,	nstates

)	^	subsetp	(dstate	,	nstates))	!	(order	(dfsa-next-state	(order	(dstate	,	nstates),	symbol	,	ntab),	nstates)	=	order	(dfsa-next-

state	(dstate	,	symbol	,	ntab),	nstates))

Theorem:	order-dfsa-next-state-order

3.2.	A	CONSTRUCTIVE	PROOF

37

It 	was	also	necessary	to	show	that	the	determinist ic	next	state	is	a	subset	of	the	nondeterminist ic	states	if	the	table	is	well

formed.	A	basic	rule	showing	the	interact ion	of	the	funct ions	next-states	and	append	is	the	key	lemma	in	this	proof.	Theorem:

subsetp-next-states	wf-table	(m	,	alphabet	,	nstates)	!	subsetp	(next-states	(m	,	state	,	symbol),	nstates)	Theorem:	non-de

nedp-next-state	(:	de	nedp	(cons	(st 	,	a),	table))	!	(next-states	(table	,	st 	,	a)	=	nil)	Theorem:	next-states-append	next-states

(append	(a	,	b),	s	,	x)	=	if	de	nedp	(cons	(s	,	x),	a)	then	next-states	(a	,	s	,	x)	else	next-states	(b	,	s	,	x)	endif	Theorem:

subsetp-dfsa-next-state	(wf-table	(m	,	alphabet	,	nstates)	^	subsetp	(dstate	,	nstates))	!	subsetp	(dfsa-next-state	(dstate	,

symbol	,	m),	nstates)	In	order	to	show	that	the	next	states	in	the	determinist ic	table	for	a	speci	c	symbol	is	the	dfsa-table-for-

symbol	two	rather	esoteric	lemma	had	to	be	proven.	The	second,	a	terrible	rewrite	rule,	is	considered	at 	every	subsequent	point

at 	which	an	equality	is	to	be	rewrit ten	(which	is	most	of	the	t ime),	and	so	must	be	disabled	and	only	enabled	for	the	speci	c

lemma	for	which	it 	is	needed.	Theorem:	not-de	ned-next-states-nil	(:	de	nedp	(cons	(s	,	x),	dfsa-table-for-symbol	(x	,	b	,	c	,	d)))

!	(next-states	(dfsa-table	(z	,	b	,	c	,	d),	s	,	x)	=	nil)	Theorem:	de	nedp-means-equal	de	nedp	(cons	(s	,	a),	dfsa-table-for-symbol

(x	,	b	,	c	,	d))	!	((a	=	x)	=	t)	Theorem:	next-states-dfsa-table	(a	2	alphabet)	!	(next-states	(dfsa-table	(alphabet	,	b	,	c	,	d),	s	,	a

)	=	next-states	(dfsa-table-for-symbol	(a	,	b	,	c	,	d),	s	,	a))	The	last 	problem	is	the	non-recursive	funct ion	accept,	which	was

used	to	\wrap"	the	recursive	statement	of	the	problem.	The	prover	unfolds	the	de	nit ion,	does	not	nd	anything	interest ing	to

induct	on,	and	gives	up.	The	lemma	do-not-push	is	a	copy	of	the	unfolded	version	with	rather	more	suggest ive	names	for	the

parameters.	This	can	be	easily	proven	now	in	ve	cases	generated	by	the	induct ion	on	the	length	of	tape.	The	theorem	nfsa-

accepts=>dfsa-accepts	is	now	just 	a	special	case	of	the	lemma	do-not-push.	Theorem:	do-not-push	(subsetp	(dstate	,	nstates

)	^	subsetp	(n	nals	,	nstates)	^	wf-table	(ntab	,	alphabet	,	nstates)	^	all-member	(tape	,	alphabet)	^	accept1	(ntab	,	dstate	,	n

nals	,	tape))	!	accept1	(dfsa-table	(alphabet	,	all-subbags	(nstates),	ntab	,	nstates),	list 	(order	(dstate	,	nstates)),	dfsa-	nal-

states	(all-subbags	(nstates)	,	n	nals),	tape)

38

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Theorem:	nfsa-accepts=>dfsa-accepts

(ndfsap	(nfsa)	^	all-member	(tape	,	alphabet	(nfsa))	^	accept	(nfsa	,	tape))	!	accept	(generate-dfsa	(nfsa),	tape)

The	most	di	cult 	direct ion	in	the	mechanical	proof	has	now	been	proven	without	the	use	of	axioms.	The	proof	could	not	have

been	completed	without	the	aid	of	PC-NQTHM,	the	interact ive	proof-checker	added	to	the	prover	by	Matt 	Kaufmann.	With	the

aid	of	this	tool,	axioms	could	be	discovered	that	were	necessary	for	the	proof.	Then	the	work	could	be	cont inued	on	those

axioms	unt il	they	too	were	provable.	PC-NQTHM	proofs	are,	however,	exceedingly	brit t le	{	name	changes,	the	addit ion	of	new

rules	or	even	just 	switching	the	posit ion	of	two	hypotheses	can	\break"	the	proof.	Thus,	e	ort 	had	to	be	expended	to	nd	a	way	to

prove	each	lemma	without	the	help	of	this	tool.	It 	is	not	always	obvious	how	to	do	this,	but 	it 	was	possible	for	this	example.

3.2.7	The	Proof:	The	NFSA	Accepts	if	the	DFSA	does

The	proof	of	the	other	direct ion	in	the	equivalence	was	relat ively	easy	by	comparison.	There	was	only	one	new	theorem	that	was

necessary,	the	other	lemmata	were	analogous	to	the	other	direct ion,	i.e.	we	needed	a	formulat ion	of	the	theorem	with	all	non-

recursive	funct ions	unfolded.	The	theorem	not-some-member-not-member-dfsa-final-states	states	that	a	determinist ic	state	is

not	a	member	of	the	determinist ic	nal	states	if	it 	does	not	have	a	member	of	the	nondeterminist ic	nal	states	as	one	of	its

members.	This	theorem	was	one	of	a	number	that	were	suggested	by	PC-NQTHM	and	eventually	proven	with	its	help.

Theorem:	member-dfsa-	nal-states-some-member

(x	2	dfsa-	nal-states	(foo	,	bar))	!	some-member	(x	,	bar)

Theorem:	not-some-member-not-member-dfsa-	nal-states

(:	some-member	(w	,	z))	!	(order	(w	,	d)	62	dfsa-	nal-states	(all-subbags	(d)	,	z))

Theorem:	member-order-dfsa-	nal=>some-member

(subsetp	(w	,	d)	^	subsetp	(z	,	d)	^	(order	(w	,	d)	2	dfsa-	nal-states	(all-subbags	(d)	,	z)))	!	some-member	(w	,	z)

Now	the	unfolded	version	can	be	proven	followed	by	dfsa-accepts=>nfsa-accepts,	and	with	that	the	main	theorem,	that	the

nondeterminist ic	automaton	will	accept	a	tape	if	and	only	if	the	determinist ic	one	does,	can	be	proven	as	well.

Theorem:	do-not-push-theorem-3

(subsetp	(w	,	d)	^	subsetp	(z	,	d)	^	wf-table	(v	,	x	,	d)	^	all-member	(tape	,	x)	^	accept1	(dfsa-table	(x	,	all-subbags	(d),	v	,	d),

list 	(order	(w	,	d)),	dfsa-	nal-states	(all-subbags	(d),	z),	tape))	!	accept1	(v	,	w	,	z	,	tape)

3.3.	AN	EXISTENTIAL	PROOF

Theorem:	dfsa-accepts=>nfsa-accepts

39

(ndfsap	(nfsa)	^	all-member	(tape	,	alphabet	(nfsa))	^	accept	(generate-dfsa	(nfsa),	tape))	!	accept	(nfsa	,	tape)	(ndfsap	(nfsa

)	^	all-member	(tape	,	alphabet	(nfsa)))	!	(accept	(generate-dfsa	(nfsa),	tape)	$	accept	(nfsa	,	tape))

Theorem:	nfsa=dfsa

This	proof	appears	much	simpler	than	the	one	above,	but	that 	is	only	because	a	number	of	lemmata	above	were	proven	in	such	a

general	way	that	they	are	applicable	for	both	direct ions	of	the	equivalence	proof.

3.3	An	Existent ial	Proof

William	D.	Young7,	a	CLInc	reasearcher,	has	taught	automata	theory	a	number	of	t imes	at 	Southwest	Texas	State	University	in

San	Marcos,	Texas,	and	was	intrigued	by	my	proof	of	automaton	equivalence.	I	encouraged	him	to	use	a	new	extent ion	to

NQTHM,	which	uses	Skolemizat ion	for	expressing	existent ial	quant i	cat ion,	to	do	the	same	proof	so	that	the	results	could	be

compared.	He	recorded	his	proof	in	a	CLInc	internal	note	You93].	In	this	sect ion	I	will	brie	y	describe	his	proof	for	the	purpose	of

contrast ing	it 	with	the	construct ive	proof	given	above.	The	idea	of	separat ing	the	de	nit ion	of	a	recognizer	shell	fsa*	from	a

predicate	recognizing	a	\real"	automaton,	fsap,	is	due	to	him.	His	predicate,	however,	is	much	shorter	than	mine.	He	only

demands	that	the	alphabet	and	set	of	states	be	non-empty,	the	start ing	states	and	the	nal	states	be	subsets	of	the	set	of

states,	and	that	the	nal	states	be	a	proper	set .	My	de	nit ion	was	expanded	to	include	that	the	start 	states	be	a	non-empty	set

as	well,	and	that	the	set	of	states	be	a	proper	set 	(i.e.	no	duplicate	states).	This	did	complicate	my	proof,	as	I	had	to	prove	that

the	determinist ic	states	generated	was	indeed	a	proper	set ,	but 	this	I	felt 	was	closer	to	the	de	nit ion	of	a	nite	state	automaton

given	in	RS59].	The	next	de	nit ion	he	gives	is	of	a	t ransit ion.	He	includes	in	his	predicate	for	recognizing	a	t ransit ion	that	it 	must

be	a	list 	of	length	2.	My	transit ion	de	nit ion	was	a	bit 	more	general,	ignoring	anything	that	might	be	beyond	the	second	element	in

the	list 	de	ning	a	t ransit ion.	He	uses	a	dotted	pair	with	the	rst 	element	itself	a	dotted	pair	containing	a	state	and	a	symbol	for

construct ing	a	t ransit ion	just 	as	I	do,	although	he	uses	the	pair	(input	.	state)	where	I	use	(state	.	input)	as	in	RS59].	While	both

scripts	contain	equivalent	de	nit ions	8	similarly	named	for	recognizing	determinist ic	t ransit ions	and	tables,	there	were	some	di

erences.	My	recognizer	for	nondeterminist ic	tables	was	called	wf-table,	his	ndfsa-table-p.	This	is	just 	a	cultural	naming	di	erence

{	VDM-like	names	vs.	LISP-like	names.

7	I	am	indebted	to	him	for	showing	how	this	example	could	be	proven	using	the	existent ial	quant i	cat ion	extension,	and	for	the

many	good	ideas,	especially	the	introduct ion	of	the	ordering	to	mimic	set 	theory.	8	Many	of	the	funct ions	and	de	nit ions	are	the

same	in	both	scripts,	except	for	the	names	of	the	variables	or	the	ordering	of	the	terms	in	conjunct ions.	This	can	have	an	e	ect

on	the	proof,	as	the	rst 	term	in	a	conjunct	governs	the	choice	of	rewrite	rule,	and	the	name	of	a	variable	is	used	when	a

commutat ive	rule	is	applied	{	it 	can	only	be	used	if	the	names	of	the	variables	are	not	in	an	alphabet ic	order,	so	that	there	is	not

an	endless	loop	of	commutat ive	rewrites.	Thus,	this	might	have	had	an	e	ect 	on	the	proofs,	but	I	have	not	looked	into	this	as	it 	is

a	rather	esoteric	quirk	of	the	prover.

3.3.1	Construct ion	of	the	Determinist ic	Table

40

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

The	funct ion	for	construct ing	a	determinist ic	next	state	for	one	determinist ic	state	and	one	symbol	is	structured	di	erent ly	{	the

existent ial	script 	checks	rst 	to	see	if	there	is	actually	any	next	state	constructed	before	it 	is	added	to	the	table.	I	had	observed

that	if	none	is	constructed,	the	result 	is	nil,	and	the	Boyer-Moore	funct ion	union	does	happen	to	be	well-behaved	on	the	rst

parameter	being	nil,	returning	the	second	parameter.	This	makes	for	a	slight ly	simpler	structure	of	the	proof,	as	there	is	no	case

split 	necessary	in	this	instance,	although	it 	is	such	a	simple	split 	that 	the	prover	can	prove	it 	on	its	own.	The	idea	of	using	an

order	funct ion	to	simulate	set	theory	is	due	to	Bill.	However,	he	proves	a	number	of	theorems	about	order	which	turned	out	to	be

unnecessary	or	even	detrimental	to	the	construct ive	proof,	as	described	above.	He	was	striving	for	a	more	complete	and

compact	theory	of	ordered	lists.	It 	is	not	known	if	the	existent ial	proof	could	have	been	done	with	fewer	order-theorems.	The

next	step,	the	construct ion	of	a	determinist ic	t ransit ion,	is	done	in	one	step	in	the	existent ial	proof.	In	the	construct ive	proof	a

non-recursive	funct ion,	mk-transit ion	is	used,	as	this	is	the	VDM-idiom	I	am	accustomed	to	using.	It 	is	unnecessary	to	the	proof	{

it 	is	automat ically	unfolded	{	but	I	feel	that 	it 	makes	the	script 	slight ly	more	readable.	The	construct ion	of	the	full	table	is	done

with	equivalent	funct ions.	The	construct ion	of	start ing	states,	however,	is	completely	di	erent:	the	construct ive	proof	makes	one

state	with	all	of	the	possible	nondeterminist ic	start 	states,	ordering	it 	so	that	it 	is	a	member	of	the	power	set .	The	existent ial

proof	de	nes	a	funct ion	map-list 	that 	turns	a	list 	of	elements	into	a	list 	of	singleton	lists	containing	the	elements.	This	is	not	the

construct ion	method	as	given	in	RS59],	but 	interest ingly	enough,	it 	is	also	a	su	cient	set 	of	start ing	states	for	the	determinist ic

automaton!	Since	no	opt imizat ion	is	at tempted,	the	complete	power	set 	automaton	is	constructed,	and	any	state	containing	a

start 	state	will	be	su	cient.	I	felt ,	however,	that 	a	determinist ic	machine	should	just 	have	one	start 	state,	and	thus	use	that

element	of	the	power	set 	which	just 	contains	all	of	the	nondeterminist ic	start ing	states	as	the	determinist ic	start ing	state.	The

nal	state	construct ion	uses	di	erent	funct ions	to	achieve	the	same	goal.	I	use	the	some-member	witness	funct ion	while	he	uses

the	library	funct ion	disjoint .	Running	both	construct ion	methods	results	in	the	same	tables	for	all	test 	cases	used,	except	for	the

start ing	states	as	discussed	above.

3.3.2	The	Generated	Automaton	is	Determinist ic

This	is	a	very	similar	proof	to	the	construct ive	one.	A	number	of	small	lemmata	about	the	generated	nal	states	being	a	subset	of

the	generated	states	and	such	are	also	necessary.	This	is	clear,	since	the	fsap	predicate	is	involved	and	it 	must	be

demonstrated	that	what	is	de	ned	is	actually	a	nite	state	automaton.	The	proofs	are	quite	t rivial.	One	theorem	in	the	existent ial

proof	is	unnecessarily	complex,	next-state-subset.	It 	was	determined	in	the	construct ive	proof	that 	it 	is	su	cient	to	state	that

the	nondeterminist ic	table	is	well	formed	when	the	next-state	constructed	is	a	subset	of	the	nondeterminist ic	states.	The

existent ial	proof	uses	three	further	hypotheses,	including	one	that	the	next-state	constructed	is	a	proper	list .	Another	theorem

includes	an	unnecessary	hypothesis	about	the	determinist ic	states	being	a	subset	of	the	power	set 	when	actually	they	are	equal.

It 	is	not	clear	if	these	are	necessary	because	of	the	actual	funct ion	de	nit ions,	or	because	the	proof	is	not	\polished"9.

Polishing	a	proof	is	an	extremely	t ime-consuming	act ivity.	One	can	check	which	funct ions	are	not	used,	comment	them	out,	retry

the	proof,	check	then	to	see	which	ones	are	not	used,	etc.	unt il	a	\steady	state"	is	achieved.	One	can	also	play	with	theorems

having	hypotheses,	to	see	if	they	can	be	proven	without	hypotheses	using	further,	more	general	lemmata,	and	if	they	st ill	are	e

ect ive.	Or	one	can	try	and	nd	more	general	theorems,	of	which	the	theorems	of	interest 	are	just 	special	cases.	It 	can	be	a

dangerous	undertaking,	as	small	changes	can	invalidate	the	proof,	so	care	must	be	taken	to	preserve	versions	of	the	proof	which

st ill	go	through.

9

3.3.	AN	EXISTENTIAL	PROOF

Other	than	these	cosmetic	details,	the	proofs	are	in	essence	the	same.

41

3.3.3	The	DFSA	Accepts	if	the	NFSA	does

Definit ion:

At	this	point 	the	proofs	diverge.	The	not ion	of	acceptance	used	in	the	existent ial	proof	is	the	idea	of	t racing	a	path	for	a	tape	in

an	automaton.	He	introduces	the	following	predicate:	t races-to-	nal	(tape	,	path	,	fsa)	=	let 	table	be	next-state-table	(fsa)

in	if	tape	'nil	then	listp	(path)	^	(cdr	(path)'	nil)	^	(car	(path)	2	nal-states	(fsa))	else	(car	(path)	2	states	(fsa))	^	(car	(tape)	2

alphabet	(fsa))	^	listp	(cdr	(path))	^	(cadr	(path)	2	next-state	(table	,	car	(tape),	car	(path)))	^	t races-to-	nal	(cdr	(tape),	cdr

(path),	fsa)	endif	endlet

This	means	that	given	a	tape	and	a	path	and	an	automaton,	the	path	is	a	valid	one	for	the	tape	in	the	automaton.	A	valid	path	is

one	that	is	one	element	longer	than	the	tape.	If	the	tape	is	not	empty,	then	the	rst 	element	of	the	path	is	a	valid	state	in	the

automaton,	and	the	next	element	is	a	member	of	the	next	states	for	the	pair	consist ing	of	the	rst 	element	of	the	path	and	the	rst

symbol	on	the	tape	(both	which	are	members	of	their	respect ive	sets,	states	and	alphabet).	If	the	tape	has	been	exhausted,

then	there	is	exact ly	one	element	left ,	and	that	is	a	member	of	the	nal	states.	Note	that	this	not ion	of	t racing	to	a	nal	state	is

irrespect ive	of	speci	c	start 	states:	the	path	is	a	t race	for	the	tape	start ing	at 	the	rst 	element	of	the	path.	The	not ion	of

acceptance	is	now	de	ned	in	terms	of	this	t racing	to	a	nal	state	(and	is	the	same	for	both	kinds	of	automaton,	as	in	the

construct ive	proof).	The	path	is,	however	anchored	to	the	start 	states.

Definit ion:

accepts1	(tape	,	path	,	fsa)	=	(t races-to-	nal	(tape	,	path	,	fsa)	^	(car	(path)	2	start-states	(fsa)))	Now	the	explicit 	existent ial

quant i	er	comes	into	play:	a	tape	is	accepted	if	there	is	some	accept ing	path	t racing	the	tape	from	a	start ing	state.

Definit ion	(Skolemized):	accepts	(tape	,	fsa)	$	9	path	accepts1	(tape	,	path	,	fsa)

This	Skolemizat ion	introduces	necessary	and	su	cient	axioms	to	cover	the	existence	of	a	path,	such	that	accepts1	returns	the

value	T.	See	Kau89]	for	more	details	on	the	DEFN-SK	extension	to	the	prover.	The	proof	script 	contains	a	number	of	lemmata

relat ing	next-state	with	append,	nondeterminist ic	with	determinist ic	nal	states,	and	about	the	next	states	in	the	computed	table.

This	is	found	by	many	users	of	the	prover	to	be	an	unnecesssary	act ivity,	as	it 	does	nothing	to	further	the	proof	(it 	has,	after	all,

been	proven).	It 	may,	however,	make	the	proof	shorter	and	more	understandable	to	the	human	reader.	It 	would	be	an	interest ing

area	of	study	to	see	if,	given	a	proof	in	the	system,	a	more	compact	proof	could	automat ically	be	found.

42

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Even	for	the	existent ial	proof,	some	construct ion	is	necessary:	a	funct ion	construct-dpath	is	de	ned	to	construct 	a	path	from

start 	in	a	determinist ic	table.	It 	will	only	work	for	the	determinist ic	automaton,	as	only	the	rst 	next-state	is	considered.

Definit ion:

construct-dpath	(tape	,	start 	,	dtable)	=	if	tape	'	nil	then	list 	(start)	else	cons	(start 	,	construct-dpath	(cdr	(tape),	car	(next-

state	(dtable	,	car	(tape),	start)),	dtable))	endif	Some	lemmata	about	this	funct ion	are	proven,	and	some,	such	as	the	singleton

lists	being	members	of	the	power	set 	(important	because	of	the	way	in	which	the	determinist ic	start 	states	are	constructed),	are

necessary	before	the	main	theorem	can	be	proven.	However,	four	USE	hints	are	necessary	for	this	proof.	Two	use	funct ions

that	are	introduced	by	DEFN-SK+,	accepts-necc	and	accepts-suff,	one	uses	an	unfolded	version	of	the	theorem	similar	to	the

construct ive	proof,	and	one	gives	the	subst itut ion	so	that	the	singleton-member-power-set	lemma	can	be	used.	The	su	ciency

hint 	uses	the	construct-dpath	funct ion,	strangely	enough	using	(list 	(car	(path	nfsa	tape)))	as	the	start 	state	instead	of	a	start

from	nfsa.	This	seems	to	be	a	sort 	of	circular	de	nit ion.	It 	appears	to	imply	that	a	NFSA	accepts	if	a	path	to	a	nal	state	exists,

not	necessarily	from	a	start ing	state,	although	the	funct ion	accepts1	does	involve	the	start ing	state.	The	other	direct ion	uses

two	more	existent ial	quant i	cat ions.	A	funct ion	t races-from-start 	is	introduced	that	is	later	proved	equivalent	to	t races-to-final

under	a	set 	of	reasonable	assumptions	with	a	number	of	rather	complicated	intermediate	lemmata.	The	rst 	existent ial	quant i

cat ion	asserts	the	existence	of	a	path	that	t races	from	a	start 	state.	some-path-traces-from-start 	(tape	,	alphabet	,	start-

states	,table	,	nal-states	,	states)	$	9	path	t races-from-start 	(tape	,	path	,alphabet	,	start-states	,table	,	nal-states	,	states)

Then	it 	is	necessary	to	de	ne	a	funct ion	next-state-preimage	that,	given	a	state	and	a	symbol,	nds	a	start ing	state	that	would

reach	the	given	state	in	one	step	over	the	symbol.	Four	lemmata	about	this	preimage	are	proven.	Similar	to	the	construct ive

proof	it 	is	shown	that	the	determinist ic	next	states	are	members	of	the	power	set 	after	proving	further	lemmata	about	ordering,

and	various	other	member	and	subsetp	lemmata.	An	extension	theorem	is	proven,	in	that 	if	there	is	a	t race	from	a	start ing	set	x

and	x	y	,	then	there	is	a	t race	from	y	as	well.	Instead	of	using	the	funct ion	some-member	as	a	predicate	indicat ing	whether	or	not

a	member	of	the	intersect ion	can	be	found,	a	funct ion	get-final-state	is	introduced	that	produces	the	witness	as	a	result .	Three

lemmata	about	this	are	proven	before	one	base	case	and	three	horribly	complex	lemmata	(each	about	a	page	long)	are	proven.

Most	of	the	term	is	given	over	to	USE	hints	to	force	subst itut ions	on	the	prover.	The	goal	theorem	is	that	if	there	exists	a	t race

from	the	start 	state	in	the	determinist ic	automaton,	then	some	path	which	traces	from	a	start 	state	exists	in	the

nondeterminist ic	automaton.	The	second	existent ial	funct ion	is	an	acceptance	funct ion	that	is	just 	like	the	previous	one,	except

that	it 	requires	all	nodes	in	the	path	to	be	lists.	This	is	because	there	could	be	a	nil

Definit ion	(Skolemized):

3.3.4	The	NFSA	Accepts	if	the	DFSA	does

3.4.	EXTENDING	THE	AUTOMATA	WITH	-TRANSITIONS

43

node	in	the	nondeterminist ic	path.	In	essence	a	nondeterminist ic	path	is	postulated	to	exist 	which	is	covered	by	the	determinist ic

path.

Definit ion	(Skolemized):

accepts2	(tape	,	fsa)	$	9	path	(accepts1	(tape	,	path	,	fsa)	^	map-listp	(path))	A	series	of	seven	lemmata	are	necessary	to

prove	that	t races-from-start 	and	traces-to-final	are	equivalent	if	the	automaton	is	a	nondeterminist ic	automaton	and	the	rst

element	of	the	path	is	a	member	of	the	start 	states.	The	theorem	can	now	be	proven,	again	with	four	USE	hints,	with	the

addit ional	hypothesis	that	F	is	not	one	of	the	states	in	the	nondeterminist ic	machine.

3.3.5	Discussion

This	proof	in	the	version	described	in	the	internal	note	encompasses	42	funct ion	de	nit ions,	3	existent ial	quant i	cat ion

introduct ions	and	88	lemmata,	so	the	size	of	the	proofs	is	comparable.	However,	the	existent ial	proof	makes	liberal	use	of	the

vast	knowledge	that	the	proof	writer	has	of	the	way	in	which	the	prover	works.	Many	hints	are	given	to	the	prover	in	order	to	get

theorems	accepted.	The	proof	is	not	to	be	taken	as	the	last 	word	in	an	existent ial	proof	{	as	ment ioned	above,	this	is	just 	a

rough	draft 	of	the	proof,	as	an	intensive	polishing	e	ort 	would	certainly	get	rid	of	many	of	the	hints	and	perhaps	even	some	of	the

hypotheses.	The	forward	direct ion	of	the	proof	is	quite	similar	to	the	hand	proof	in	RS59].	The	other	direct ion,	however,	is	quite

di	erent,	as	there	is	no	\backwards	induct ion"	possible.	This	is	replaced	by	a	di	erent	sort 	of	path	existence	predicate.	Since	the

funct ions	for	which	the	proofs	were	done	are	equivalent,	and	the	theorems	with	the	except ion	of	the	addit ional	hypothesis	in	the

dfsa=>nfsa	direct ion	are	essent ially	the	same,	the	validity	of	the	theorems	has	been	demonstrated	using	both	the	existent ial

quant i	cat ion	method	and	the	construct ive	method.	Thus,	there	is	more	evidence	that	the	existent ial	quant i	cat ion	extension	is

not	just 	logical	\magic",	and	we	have	shown	that	it 	can	be	possible	to	use	construct ive	methods	for	a	proof	that 	is

mathematically	done	using	existent ial	quant i	cat ion.	It 	should	be	noted	that	the	e	ect ive	computat ion	of	construct ion	methods	is

not	an	issue	here	{	these	funct ions	have	exponent ial	complexity,	and	are	only	e	ect ively	computable	for	the	smallest 	of

examples.	But	now	that	the	method	has	been	proven	correct ,	opt imizat ions	can	be	introduced	and	the	power	of	the	opt imized

versions	demonstrated	to	be	equivalent	to	the	exponent ial	version.

3.4	Extending	the	Automata	with	-Transit ions

It 	would	seem	to	be	a	t rivial	exercise	to	extend	this	automaton	de	nit ion	to	include	tables	with	-t ransit ions.	In	the	literature	this	is

often	left 	as	an	exercise	for	the	reader.	But	there	are	a	number	of	points	that	come	up	when	implement ing	such	an	automaton

and	proving	it 	correct .	A	NFSA	with	-t ransit ions	is	an	automaton	with	components	as	before,	but	the	table	M	now	maps	S	(f	g)

to	2S	.	Instead	of	changing	only	the	state	when	a	symbol	from	the	input	has	been	read,	a	state	change	may	occur	without

reading	a	symbol	if	there	is	a	t ransit ion	from	the	current	state	to	another	state	which	is	labelled	.	A	tape	is	recognized	if	a	path

through	the	automaton	can	be	found	that	is	labelled	with	the	symbols	from	the	tape,	possibly	containing	edges	labelled	with	.

Thus	there	can	be	more	than	one	transit ion	occuring	between	any	two	symbol	t ransit ions.

44

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

In	order	to	compute	the	set	of	states	reachable	from	one	state	on	reading	one	symbol,	the	concept	of	-closure	is	needed.	The

closure	is	necessary	in	order	to	run	the	nondeterminist ic	automaton	and	also	to	compute	an	equivalent	determinist ic	automaton.

-t ransit ions	from	the	state.	The	-closure	of	a	set 	of	states	S	is	the	union	of	the	-closure	for	each	member	of	S.

De	nit ion	1	The	-closure	of	a	state	is	the	state	itself	and	all	states	reachable	by	a	chain	of

So	a	single	step	in	a	nondeterminist ic	automaton	from	a	set	of	states	must	now	consist 	of	taking	the	-closure	of	that 	set 	of

states,	then	taking	the	step	on	the	symbol,	and	then	taking	another	-closure.	Of	course,	when	combining	single	steps	it 	would

not	be	necessary	to	take	the	rst 	-closure	if	one	is	sure	that	each	previous	step	ends	with	such	a	closure	{	taking	the	-closure

again	will	not 	add	any	states	to	the	set	of	states.	All	authors	construct 	the	determinist ic	automaton	in	the	same	manner:	The

set	of	determinist ic	states	is	the	power	set 	of	the	set	of	nondeterminist ic	states,	the	start ing	state	is	the	set	containing	the

nondeterminist ic	start ing	state,	the	nal	states	are	any	determinist ic	state	containing	a	nal	state	from	the	nondeterminist ic

automaton,	and	the	table	N	(t)	is	the	-closure	of	all	states	reachable	from	the	-closure	of	t 	by	.	This	construct ion	has	a	part icular

aw:	for	the	empty	tape,	if	a	nondeterminist ic	automaton	with	-t ransit ions	has	an	-t ransit ion	from	a	start 	state	which	is	not	in	the

nal	states	to	a	state	in	the	nal	states,	then	it 	will	not 	recognize	the	tape,	but	the	determinist ic	one	will.	The	problem	is	in	the

construct ion	of	the	start 	state:	it 	would	be	better	to	take	the	-closure	of	the	nondeterminist ic	start 	state.	This	is	unfortunate	for

the	proof,	as	noted	by	Hopcroft 	and	Ullman	HU79,	p.26],	but 	easily	taken	care	of	by	start ing	the	induct ion	proof	with	tapes	of

length	1.	This	complicates	the	mechanical	proof,	however.	Implement ing	the	construct ion	algorithm	in	the	logic	is	a	surprisingly	di

cult 	task	{	the	terminat ion	argument	for	the	-closure	is	not	t rivial.	It 	involves	the	set	di	erence	between	the	complete	set	of

states	and	the	set	of	states	contained	in	the	closure.	A	funct ion	can	be	constructed	that	takes	one	step	for	every	state	in	a	set

of	states.

Definit ion:

one-epsilon-step-all	(states	,	table)	=	if	states	'	nil	then	nil	else	next-states	(table	,	car	(states),	epsilon)	one-epsilon-step-all

(cdr	(states),	table)	endif	The	closure	takes	the	table,	a	set 	of	states,	and	the	complete	set	of	states	as	arguments.	The	lat ter

could	theoret ically	be	constructed	by	comput ing	the	domain	of	the	table	and	unioning	that	with	the	range	union	of	the	table,	but

that	would	complicate	the	funct ion	unnecessarily.	A	tentat ive	next	step	is	calculated	by	taking	the	union	of	one	step	and	the	set

of	states10.	If	the	length	of	this	next	step	is	the	same	as	the	length	of	the	set	of	states,	or	if	all	states	have	been	included

(meaning	it 	is	the	same	length	as	the	set	of	all	states),	then	the	funct ion	terminates,	otherwise	another	round	of	recursion	is

called	for.	The	terminat ion	argument	is	then	the	di	erence	between	the	length	of	the	set	of	all	states	and	the	length	of	the	set	of

states.	It 	would	be	preferable	to	have	set	equality	here,	but	that 	is	not	easy	to	achive	when	modelling	sets	as	lists,	as	discussed

above.

Note	that	it 	is	important	that 	the	parameters	to	union	are	in	this	order!	The	satellite	funct ion	is	not	a	perfect 	union.	When	the	list

in	its	rst 	parameter	has	been	exhausted,	the	second	parameter	is	returned	sight	unseen.	Since	the	start 	state	must	be	a	proper

set	in	the	well-formedness	predicate,	it 	can	be	demonstrated	that	the	result 	of	this	is	always	a	set,	if	need	be.	This	is	a	t ricky

corner	in	coaxing	the	prover	to	accept	a	terminat ion	argument.

10

3.4.	EXTENDING	THE	AUTOMATA	WITH	-TRANSITIONS

Definit ion:

45

epsilon-closure	(table	,	states	,	all-states)	=	let 	next-set 	be	one-epsilon-step-all	(states	,	table)	states

in	if	(length	(states)	=	length	(next-set))	_	(length	(next-set)	6<	length	(all-states))	then	states	else	epsilon-closure	(table	,

next-set 	,	all-states)	endif	endlet

The	complex	terminat ion	argument	gets	in	the	way	of	almost	every	proof	at tempted.	Since	a	\backwards	induct ion"	cannot	be

done	back	over	the	-closure,	a	reached	funct ion	was	implemented	to	compute	the	states	reached	by	a	tape	from	a	part icular	set

of	start ing	states	and	a	number	of	interact ion	lemmata	were	proven.

Definit ion:

reached	(table	,	states	,	tape	,	all-states)	=	if	tape	'	nil	then	states	else	reached	(table	,	next-states-list 	(states	,	car	(tape),

table	,	all-states),	cdr	(tape),	all-states)	endif

Theorem:	reached-append

reached	(table	,	states	,	append	(a	,	b),	all-states)	=	reached	(table	,	reached	(table	,	states	,	a	,	all-states),	b	,	all-states)

Theorem:	subsetp-reached

(subsetp	(starts	,	nstates)	^	all-nfsa-transit ions	(table	,	alphabet	,	nstates))	!	subsetp	(reached	(table	,	starts	,	tape	,	nstates),

nstates)	(all-nfsa-transit ions	(ntab	,	alphabet	,	nstates)	^	plistp	(starts)	^	subsetp	(starts	,	nstates))	!	plistp	(reached	(ntab,

starts	,	tape	,	nstates))	plistp	(states)	!	plistp	(epsilon-closure	(table	,	states	,	all-states))	next-states-list 	(nil,	symbol	,	table	,

states)	=	nil

Theorem:	plistp-reached

Theorem:	plistp-epsilon-closure	Theorem:	next-states-list -nil

A	correspondence	theorem	was	proven	correct 	by	an	induct ion	involving	extending	the	tape	by	an	extra	symbol,	but 	this	proof

involved	three	axioms	and	was	only	provable	by	massive	intervent ion	with	PC-NQTHM.	One	theorem	is	just 	a	problem	with

order,	our	normalizat ion	funct ion	for	the	set	equality	simulat ion.	The	second	concerns	-closure	in	the	determinist ic	table	{	since

the	symbol	is	not	in	the	alphabet,	no	table	entries	can	have	in	the	symbol	component,	and	thus	the	closure	is	the	ident ity

funct ion.	The	third	is	more	subt le	{	if	a	state	has	been	reached,	it 	has	just 	been	-closed,	so	another	-closure	won't 	add	any

states.	If	these	axioms	are	t rue	and	contradict ion-free,	then	reaches-nfsa-reaches-dfsa	can	be	proven.

46

CHAPTER	3.	A	MECHANICAL	PROOF:	NFSA

DFSA

Axiom:	next-states-list -order-equal

subsetp	(a	,	b)	!	(next-states-list 	(order	(a	,	b),	symbol	,	table	,	states)	=	order	(next-states-list 	(a	,	symbol	,	table	,	states),	b

))	next-states-list 	(epsilon-closure	(ntab	,	order	(reached	(ntab	,	starts	,	tape	,	nstates),	nstates),	nstates),	symbol	,ntab

,nstates)	=	next-states-list 	(order	(reached	(ntab	,	starts	,	tape	,	nstates)	,	nstates),	symbol	,	ntab	,	nstates)

Axiom:	next-states-list -epsilon-closure-reached

Axiom:	epsilon-closure-dfsa-ident ity

epsilon-closure	(dfsa-table	(alphabet	,	dstates	,	ntab	,	nstates),	x	,	dstates)	=	x

Theorem	(using	axioms):	reaches-nfsa-reaches-dfsa

(subsetp	(starts	,	nstates)	^	listp	(tape)	^	all-nfsa-transit ions	(ntab	,	alphabet	,	nstates)	^	(symbol	2	alphabet)	^	listp	(order

(reached	(ntab	,	starts	,	tape	,	nstates)	,	nstates))	^	(reached	(dfsa-table	(alphabet	,	all-subbags	(nstates)	,	ntab	,	nstates),

dfsa-starts	(starts	,	nfsa	,	nstates),	tape	,	all-subbags	(nstates))	=	list 	(order	(reached	(ntab	,	starts	,	tape	,	nstates),	nstates

))))	!	(reached	(dfsa-table	(alphabet	,	all-subbags	(nstates)	,	ntab	,	nstates),	dfsa-starts	(starts	,	nfsa	,	nstates)	,	append

(tape	,	list 	(symbol)),	all-subbags	(nstates))	=	list 	(order	(reached	(ntab	,	starts	,	append	(tape	,	list 	(symbol)),	nstates),

nstates)))

This	should	be	enough	to	prove	the	theorem	correct 	that 	the	determinist ic	automaton	simulates	the	nondeterminist ic	one	with	-

t ransit ions,	but	something	more	is	missing.	Since	I	will	not 	be	proving	a	funct ion	correct 	that 	constructs	a	nondeterminist ic

automaton	with	-t ransit ions	from	either	regular	expressions	or	from	items	derived	from	product ions	in	a	grammar	in	order	to

construct 	a	table,	the	proof	is	left 	at 	this	stage.	It 	is	available	on-line	at 	the	address	given	in	Sect ion	1.2.

Chapter	4

Scanning

Parsing	algorithms	are	based	on	context-free	grammars,	which	are	concerned	with	recognizing	the	language	induced	by	a	set	of

product ions	on	a	sequence	of	terminal	symbols.	Useful	languages	have	an	in	nite	number	of	terminal	symbols,	each	of	which

consists	of	a	sequence	of	characters.	The	sequences,	called	token	representat ions,	are	grouped	into	a	nite	number	of	token

classes,	in	which	similar	representat ions	are	said	to	be	instances	of	the	same	token	class.	For	example	\Count"	and	\Length"	are

both	instances	of	the	token	class	ident i	er.	Determining	the	token	representat ion	class	for	a	character	sequence	is	the	task

often	referred	to	as	scanning.	This	chapter	discusses	the	issues	involved	in	a	mechanical	proof	of	a	scanner.	It 	includes,	as	an

example	of	the	process,	the	speci	cat ion,	implementat ion,	and	proof	with	the	Boyer-Moore	theorem	prover	of	a	scanner	for	the

language	PLR	0	from	the	ProCoS	language	family	DB91].

4.1	Mechanically	Proven-Correct 	Scanning

Token	representat ion	classes	are	regular	sets	that	can	be	speci	ed	by	regular	expressions	alone	and	do	not	need	the	full	power

of	context-free	grammars.	A	regular	expression	can	be	used	to	specify	such	a	token	representat ion	class.	It 	can	then	serve	as

the	basis	for	construct ing	a	nite	state	automaton	that	is	able	to	recognize	when	a	sequence	of	characters	is	a	token

representat ion	for	the	token	representat ion	class.	The	speci	cat ion	of	a	scanner	can	be	seen	as	a	set	of	regular	expressions.

However,	there	are	a	few	minor	problems	that	arise.	The	rst 	is	that 	one	often	wishes	to	refer	to	a	number	of	characters	as	one

component	of	a	regular	expression,	for	example,	let ter	and	digit 	to	represent	the	sets	f`A',	...	`Z',	`a',...,`z'	g	and	f`0',...,`9'g

respect ively.	These	character	set 	representat ions	will	be	referred	to	as	character	classes.	The	other	problem	is	more	di	cult .

Scanning	must	split 	a	sequence	of	characters	into	subsequences	that	each	belong	to	one	of	the	token	representat ion	classes.

But	not	only	can	there	be	overlap,	where	a	sequence	of	characters	can	belong	to	more	than	one	token	representat ion	class,

there	can	also	be	more	than	one	way	to	split 	a	sequence	into	subsequences.	For	example,	the	character	sequence	"AB12"	could

be	construed	to	be	either	(name,	"AB12")	or	(name,	"AB")	(integer,	"12").	Usually	this	is	solved	by	applying	the	principle	of

longest	match.	This	is	the	at tempt	at 	each	stage	to	nd	the	longest	possible	pre	x	of	the	sequence	that	is	a	member	of	some

token	representat ion	class.	This	often	entails	a	sort 	of	lookahead	to	see	if	the	next	character	extends	the	token	within	the	token

representat ion	class	de	nit ion	or	not.	If	there	is	more	than	one	regular	expression	with	longest	match,	then	they	determine	the

same	pre	x	because	they	must	have	the	same	length.	In	such	a	case,	select ing	the	rst 	regular	47

48

CHAPTER	4.	SCANNING

expression	according	to	the	order	in	the	speci	cat ion	will	determine	a	unique	token	class.	This	combined	rule	will	be	referred	to	as

the	\	rst 	longest	match"1	principle.	A	scanner	is	normally	generated	from	the	set	of	regular	expressions	by	combining	them	to	one

large	regular	expression	with	the	or	operator.	This	regular	expression	can	be	transformed	to	a	nondeterminist ic	nite	state

automaton	and	that	can	be	made	determinist ic	by	using	the	Rabin/Scott 	method	as	described	in	chapter	3.	This	determinist ic

automaton	can	easily	be	coded	into	a	table	or	nested	case	statements.	But	there	are	st ill	problems	that	arise.	There	are	some

special	situat ions	that	cannot	be	covered	by	regular	expressions,	but	which	would	make	the	work	of	the	parsing	algorithm	much

easier	if	they	could	be	resolved	at 	this	stage	in	the	compiling	process.	These	situat ions	are	often	easily	programmed	but	are	di

cult 	to	specify	with	context-free	or	context-sensit ive	grammars.	Typically,	scanner	generators	such	as	lex	Les75]	or	ex	Pro88],	o

er	the	user	the	possibility	of	execut ing	port ions	of	code	at 	certain	points	during	the	scan,	usually	after	a	token	representat ion

class	has	been	determined,	so	that	such	\di	cult"	problems	can	be	handled.	Canonical	examples	of	this	type	of	problem	are	the	di

erent iat ion	between	keywords	and	ident i	ers,	or	determining	if	an	ident i	er	is	a	type	de	nit ion	name	or	a	variable	name,	as	in	the	C

language.	This	is	often	done	by	construct ing	and	using	an	external	symbol	table	during	scanning.	The	problems	discussed	above

make	a	mechanical	veri	cat ion	of	a	scanner	quite	di	cult :	there	must	be	an	exact	speci	cat ion	for	all	port ions	of	the	task,	if	an

implementat ion	of	a	scanner	is	to	be	proven	correct .	The	speci	cat ion	cannot	have	\holes",	or	assume	that	the	code	fragments

inserted	at 	token	representat ion	class	recognit ion	points	will	funct ion	correct ly.	The	speci	cat ion	task	can	be	facilitated	by

dividing	the	scanning	process	into	two	phases.	The	rst 	phase,	which	I	call	split ,	constructs	a	rst 	sequence	of	precursors	for

tokens,	denoted	here	as	pre-tokens,	by	split t ing	o	the	substrings	of	the	input	character	sequence	that	represent	tokens	using

the	principle	of	rst 	longest	match.	The	longest	match	is	not	obtained	by	using	a	lookahead,	but	by	running	the	nite	state

automaton	constructed	from	the	regular	expressions	against 	all	pre	xes	of	the	character	sequence2,	select ing	the	longest

accept ing	pre	x	as	the	next	subsequence	to	be	split 	o	,	and	choosing	the	rst 	regular	expression	name	from	the	acceptance	list .

In	a	second	phase,	a	series	of	t ransformat ion	funct ions	are	applied	to	the	sequence	of	pretokens.	These	funct ions	are	called

token	transformat ion	funct ions3	.	Each	transformat ion	will	t ransform	one	kind	of	pre-token	into	another	pre-token	or	into	a	token

as	expected	by	the	parser.	Examples	of	such	funct ions	are	the	transformat ion	of	the	value	of	an	integer	token	from	the	string

representat ion	into	a	number,	or	the	removal	of	one	type	of	pre-token,	for	example	the	comment	pre-token,	from	the	sequence.

Some	transformat ions	will	need	to	be	performed	in	sequence,	some	can	be	performed	in	parallel.	Each	transformat ion	funct ion

has	a	clear	speci	cat ion,	facilitat ing	the	mechanical	veri	cat ion	of	the	implementat ion.	For	now	it 	will	be	assumed	that	the	nite

state	automaton	determining	the	token	representat ion	classes	is	given	as	the	speci	cat ion.	As	is	discussed	in	Sect ion	4.2.3,	this

is	a	process	that	could	be	proven	correct ,	although	it 	is	not	done	in	the	scope	of	this	thesis.

Some	authors	use	the	term	\longest	match,	rst 	t "	for	this	not ion.	This	is	because	one	lookahead	might	not	extend	the	accepted

pre	x,	but	a	sequence	of	lookahead	characters	might	again	reach	an	accept ing	state.	3	Some	authors	BE76,	WM92]	use	the

terms	sieve	or	lter	for	this	sort 	of	funct ion.	But	sieves	and	lters	only	let 	some	parts	of	their	input	through,	keeping	back	the

\rubble".	There	will	be	some	transforming	of	tokens,	however,	and	thus	such	funct ions	should	be	called	token	transformat ion

funct ions.

1	2

4.2.	SPLITTING	OFF	PRE-TOKENS

49

4.2	Split t ing	O	Pre-Tokens

In	this	sect ion	a	scanner	which	splits	an	input	character	sequence	into	pre-tokens	will	be	speci	ed	and	proven	correct .	The

relevant	speci	cat ions	for	PLR	0	are	given,	and	the	NQTHM	events	that	are	used	in	the	proof	are	discussed.	The	concepts	of

character	and	token	representat ion	class	will	be	de	ned,	the	representat ion	of	pre-tokens	given,	the	implementat ion	of	the	split

funct ion	explained,	and	the	correctness	theorems	and	their	proof	discussed.	Since	characters	are	often	grouped	together	in	a

unit 	in	the	regular	expressions	specifying	the	token	representat ion	classes	or	as	the	label	of	a	t ransit ion	in	a	FSA,	the	rst 	task	is

to	de	ne	the	not ion	of	a	character	class.

4.2.1	Character	Class	De	nit ion

De	nit ion	2	A	character	class	is	a	named,	nite	set 	of	representat ions	for	characters.

A	character	class	is	speci	ed	by	enumerat ion.	Each	character	class	is	considered	to	be	atomic	{	there	is	no	access	to	the

component	characters	or	to	the	order	in	which	the	characters	are	listed.	Subranges	are	often	used	as	the	enumerat ion	speci

cat ion	with	respect	to	character	ordering,	for	example	the	ASCII	code	character	ordering.	Subranges	will	be	used	in	the	human

readable	speci	cat ion	of	the	character	classes	for	PLR	0	,	but 	in	the	implementat ion	in	the	logic	all	the	characters	in	the	subrange

will	have	to	be	listed	with	their	exact	representat ions,	the	byte	values	used	in	the	ASCII	code.	The	character	classes	for	a

language	must	be	disjoint ,	meaning	that	any	character	may	belong	to	at 	most	one	character	class.	Any	character	not	contained

in	a	character	class,	but	encountered	in	a	scan,	is	considered	to	be	in	error	and	aborts	the	scan.	The	character	classes	for	PLR	0

are	de	ned	as	follows:	le	di	pe	bl	co	eq	mi	lt 	gt 	lp	rp	lb	rb	op	nl	bf	ef	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=

f'a',	:	:	:	,	'z',	'A',	:	:	:	,	'Z'g	f'0'	,	:	:	:	,	'9'g	f'.'g	f'	'g	f':'g	f'='g	f'-'g	f'<'g	f'>'g	f'('g	f')'g	f'	'g	f']'g	f'+',	'*',	'/',	'n',	'?',	'!'g	f	-g	{	carriage	return

f`g	{	begin	of	le	marker	fag	{	end	of	le	marker

All	one	character	operators	that	are	not	needed	in	token	representat ion	class	de	nit ions	have	been	grouped	together	in	the

character	class	op.	They	will	be	mapped	to	their	respect ive	tokens	in	a	token	transformat ion	funct ion.	This	cuts	down	on	the	size

of	regular	expressions	for	constructs	such	as	comment,	as	the	regular	expression	operator	for	NOT	is	not	used.	The	character

class	de	nit ion	for	PLR	0	as	needed	for	NQTHM	is	given	in	Appendix	A.1.

50

CHAPTER	4.	SCANNING

4.2.2	Pre-Token	Class	De	nit ion

As	discussed	above,	a	sequence	of	token	representat ion	class	members	is	to	be	constructed	from	the	character	sequence	so

that	the	parser	need	only	handle	a	nite	number	of	such	classes.	Only	pre-tokens	will	be	considered	at 	this	point .

De	nit ion	3	A	pre-token	class,	or	token	representat ion	class,	is	a	possibly	in	nite	set 	of

nite	character	sequences	that	is	speci	ed	by	a	regular	expression	over	character	classes.

There	must	be	a	nite	number	of	pre-token	classes	in	a	language	speci	cat ion.	The	classes	usually	involve	groupings	for	names

and	numbers,	for	special	characters	that	are	used	to	syntact ically	denote	aspects	of	the	language,	and	for	combinat ions	of	non-

alphanumeric	characters	that	can	be	considered	to	be	keywords,	but	which	cannot	be	pre	xes	of	any	ident i	er	and	can	thus	be

isolated	early	in	the	scanning	process,	for	example	\:=".	Only	the	regular	expression	operat ions	concatenat ion,	disjunct ion	(+),

and	iterat ion(*)	will	be	used	in	the	speci	cat ions.	The	post	x	+	and	negat ion	operat ions	are	not	absolutely	necessary	for	such

speci	cat ions	and	are	cumbersome	to	implement,	and	thus	are	not	used.	The	pre-token	classes	for	PLR	0	are	de	ned	as	follows:

Lname	Linteger	Lcolon	Lcoloneq	Llt 	Lle	Lne	Lgt	Lge	Lindent	Lws	Leq	Lop	Lef	Lcomment

=	=	=	=	=	=	=	=	=	=	=	=	=	=	=

le	(le	+	di	+	pe)*	di	di*	co	co	eq	lt 	lt 	eq	lt 	gt 	gt 	gt 	eq	nl	(bl	bl)*	bl	bl*	{	whitespace	eq	op	+	mi	ed	mi	mi	(le	+	di	+	pe	+	bl	+	co	+	eq	+

lt 	+	gt 	+	mi	+	op)*

Pre-tokens	will	be	represented	as	a	pair	consist ing	of	a	name	{	a	symbol	denot ing	the	pretoken	class	{	and	a	string	value,	which

is	the	port ion	of	the	input	matching	the	de	ning	regular	expression.	Some	compilers	encode	further	informat ion	into	their	token

representat ions,	for	example	the	line	and	column	posit ion	at 	which	the	token	began	in	the	original	input	le.	This	scanner	will	not

be	concerned	with	such	further	informat ion,	as	it 	is	primarily	used	for	preparing	error	messages	and	the	ProCoS	compilers	aim	to

compile	programs	that	have	been	automat ically	and	correct ly	generated	from	speci	cat ions	and	thus	are	free	of	syntact ical

errors.	A	determinist ic	nite	state	automaton	is	constructed	by	rst 	making	the	non-determinist ic	nite	state	automaton	that

recognizes	any	one	of	the	regular	expressions.	First 	the	NFSAs	for	the	individual	pre-token	class	de	nit ions	are	constructed.

Each	automaton	NFSAi	consists	of	a	set 	of	character	class	names	as	the	alphabet	i	,	a	set 	of	states	Si	,	a	start ing	state	S0i	,	a

transit ion	table	Mi	and	a	set	of	accept ing	states	Fi	.	In	order	to	make	the	next	step	easier,	the	states	Si	will	be	constructed	so

that	they	are	disjunct.	The	states	will	be	pairs	consist ing	of

4.2.3	Construct ing	a	FSA

4.2.	SPLITTING	OFF	PRE-TOKENS

51

a	number	(the	state	for	the	individual	FSA	constructed	from	one	regular	expression)	and	the	name	of	the	pre-token	class.	In	this

manner	a	set 	of	disjoint 	states	is	easily	obtained	when	the	union	of	all	states	is	taken.	The	entries	in	the	transit ion	table	are

triples	(from-state,	label,	to-state).

A	Nondeterminist ic	FSA

These	are	the	fteen	nite	state	automata	for	the	individual	pre-token	class	regular-expression	speci	cat ions	for	PLR	0	that	will	be

joined	to	make	one	NFSA	that	can	recognize	any	of	the	individual	components.

NFSAname	=	(name	Sname	Sname	Mname	Fname	NFSAinteger	=	(integer	Sinteger	Sinteger	Minteger	Finteger	NFSAcolon	=

(colon	Scolon	Scolon	Mcolon	Fcolon	NFSAcoloneq	=	(coloneq	Scoloneq	Scoloneq	Mcoloneq	Fcoloneq	NFSAlt 	=	(lt 	Slt 	Slt 	Mlt

Flt 	NFSAle	=	(le	Sle	Sle	Mle	Fle	NFSAne	=	(ne	Sne	Sne	Mne	Fne	NFSAgt	=	(gt 	Sgt	Sgt	Mgt	Fgt	NFSAge	=	(ge	Sge

0	0	0	0	0	0	0	0

=	fle,di,peg,	=	f(1,name),(2,name)g,	=	(1,name),	=	f((1,name),le,(2,name)),((2,name),le,(2,name)),	((2,name),di,(2,name)),

((2,name),pe,(2,name))g,	=	f(2,name)g)	=	fdig,	=	f(3,integer),(4,integer)g,	=	(3,integer),	=	f((3,integer),di,(4,integer)),

((4,integer),di,(4,integer))g,	=	f(4,integer)g)	=	fcog,	=	f(5,colon),(6,colon)g,	=	(5,colon),	=	f((5,colon),co,(6,colon))g,	=

f(6,colon)g)	=	fco,eqg,	=	f(7,coloneq),(8,coloneq),(9,coloneq)g,	=	(7,coloneq),	=	f((7,coloneq),co,(8,coloneq)),((8,coloneq),eq,

(9,coloneq))g,	=	f(9,coloneq)g)	=	fltg,	=	f(10,lt),(11,lt)g,	=	(10,lt),	=	f((10,lt),le,(11,lt))g,	=	f(11,lt)g)	=	flt ,eqg,	=	f(12,le),(13,le),

(14,le)g,	=	(12,le),	=	f((12,le),lt ,(13,le)),((13,le),eq,(14,le))g,	=	f(14,le)g)	=	flt ,gtg,	=	f(15,ne),(16,ne),(17,ne)g,	=	(15,ne),	=

f((15,ne),lt ,(16,ne)),((16,ne),gt ,(17,ne))g,	=	f(17,ne)g)	=	fgtg,	=	f(18,gt),(19,gt)g,	=	(18,gt),	=	f((18,gt),gt ,(19,gt))g,	=	f(19,gt)g)

=	fgt ,eqg,	=	f(20,ge),(21,ge),(22,ge)g,

52

Sge	Mge	Fge

0	0

CHAPTER	4.	SCANNING

All	of	these	automata	are	determinist ic,	but 	when	they	are	composed	a	non-determinist ic	automaton	is	obtained,	since	there	is

more	than	one	state	(for	example	11,	13	or	16)	that 	is	reachable	from	the	new	start 	state	on	a	t ransit ion	labelled	lt .	The

automaton	is	constructed	by	taking	the	union	of	the	alphabets,	the	union	of	the	states	and	a	new	state	0,	the	state	0	as	new

start 	state,	the	union	of	all	t ransit ion	tables	and	a	t ransit ion	from	the	new	start 	state	to	all	of	the	start 	states	of	the	regular

expression	automata,	and	the	union	of	the	accept ing	states.	Since	the	states	are	all	pairs	containing	the	name	of	the	de	ning

regular	expression,	it 	can	be	determined	from	any	accept ing	state	which	regular	expression	was	responsible	for	the	recognit ion

by	examining	the	name	component	of	that 	state.	So	the	combined	automaton	for	PLR	0	is	S	NFSAPLR	=	(PLR	=	i	,	0	0	S

SPLR	=	Si	f(0,.)g,	0	S0PLR	=	f(0,.)g,

0

=	(20,ge),	=	f((20,ge),gt ,(21,ge)),((21,ge),eq,(22,ge))g,	=	f(22,ge)g)	NFSAindent	=	(indent	=	fnl,bl,bfg,	Sindent	=	f(23,indent),

(24,indent),(25,indent)g,	Sindent	=	(23,indent),	Mindent	=	f((23,indent),nl,(24,indent)),((23,indent),bf,(24,indent)),

((24,indent),bl,(25,indent)),((25,indent),bl,(24,indent))g,	Findent	=	f(24,indent)g)	NFSAws	=	(ws	=	fblg,	Sws	=	f(26,ws),

(27,ws)g,	Sws	=	(26,ws),	Mws	=	f((26,ws),bl,(27,ws)),((27,ws),bl,(27,ws))g,	Fws	=	f(27,ws)g)	NFSAeq	=	(eq	=	feqg,	Seq	=

f(28,eq),(29,eq)g,	Seq	=	(28,eq),	Meq	=	f((28,eq),eq,(29,eq))g,	Feq	=	f(29,eq)g)	NFSAop	=	(op	=	fop,mig,	Sop	=	f(30,eq),

(31,eq)g,	Sop	=	(30,eq),	Mop	=	f((30,eq),op,(31,eq)),((30,eq),mi,(31,eq))g,	Fop	=	f(31,eq)g)	NFSAcomment	=	(comment	=

fmi,le,di,pe,bl,op,co,eq,gt ,ltg,	Scomment	=	f(32,comment),(33,comment),(34,comment)g,	Scomment	=	(32,comment),

Mcomment	=	f((32,comment),mi,(33,comment)),	((33,comment),mi,(34,comment)),	((34,comment),mi,(34,comment)),

((34,comment),le,(34,comment)),	((34,comment),di,(34,comment)),((34,comment),pe,(34,comment)),	((34,comment),bl,

(34,comment)),((34,comment),op,(34,comment)),	((34,comment),co,(34,comment)),((34,comment),eq,(34,comment)),

((34,comment),gt ,(34,comment)),((34,comment),lt ,(34,comment))	g,	Fcomment	=	f(34,comment)g)	NFSAef	=	(ef	=	fefg,	Sef

=	f(35,ef),(36,ef)g,	Sef	=	(35,ef),	Mef	=	f((35,ef),ef,(36,ef))g,	Fef	=	f(36,ef)g)

0	0	0	0	0

4.2.	SPLITTING	OFF	PRE-TOKENS

MPLR	=	Mi	f((0,.),	,s	j	s	2	S0i	g	0	S	FPLR	=	Fi),	0	for	i	2	fname,	integer,	colon,	coloneq,	lt ,	le,	ne,	gt ,	ge,	indent,	ws,	eq,	op,

commentg

53

S

S

The	Determinist ic	FSA	for	PLR	0

The	method	of	construct ing	the	determinist ic	table	as	out lined	in	Gou88,	p.	93],	based	on	the	Rabin/Scott 	method	RS59],	will	be

used.	In	order	to	more	clearly	see	what	is	happening,	only	the	state	numbers	and	not	the	complete	state	number	and	expression

name	pair	are	used.	From	the	-closure	of	the	start 	state,	f0,	1,	3,	5,	7,	10,	12,	15,	18,	20,	23,	26,	28,	30,	32,	35g,	the	set	of

states	reachable	by	a	t ransit ion	on	a	member	of	the	alphabet	is	determined.	From	each	such	collect ion	it 	is	determined	if	any

more	sets	of	states	are	reachable	by	-closure.	This	cont inues	unt il	no	further	new	sets	of	states	are	constructed.	Each	new

state	is	a	member	of	the	power	set 	of	the	original	set 	of	states,	and	is	accept ing	if	any	member	is	a	member	of	the	nal	state.

The	state	designators	are	renamed	to	make	them	easier	to	read.	Only	accept ing	states	have	meaningful	name	components,	the

rest 	have	a	dot	(.)	for	\don't 	care".	The	results	for	PLR	0	are	given	in	gure	4.1.

le	0,	1,	3,	5,	7,	2	10,	12,	15,	18,	20,	23,	26,	28,	30,	32,	35	2	2	4	27	6,	8	29	31,	33	11,	13,	16	19,	21	31	24	36	9	34	34	14	17	22

25	di	pe	bl	co	eq	mi	lt 	gt 	op	nl	bf	nf	Acc?	new	4	27	6,	8	29	31,	11,	19,	31	24	24	36	N	A	33	13,	21	16	2	4	2	27	9	14	22	25	34	34

34	34	24	34	34	34	34	34	34	17	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R

Figure	4.1:	Construct ing	the	DFSA	for	PLR	0	So	for	PLR	0	the	determinist ic	FSA	is	=	fle,	di,	pe,	bl,	co,	eq,	mi,	lt ,	gt ,	op,	nl,	bf,

nfg,	PLR	0	=	f(A,.),	(B,name),	(C,digit),	(D,ws),	(E,colon),	(F,eq),	(G,op),	(H,lt),	(I,gt),	SPLR	0	(J,op),	(K,indent),	(L,ef),

(M,coloneq),	(N,comment),	(O,le),	(P,ne),	(Q,ge),	(R,.)g,	0	SPLR	=	f(A,.)g,

0

54

CHAPTER	4.	SCANNING

MPLR	can	be	read	from	the	table,	and	0	FPLR	=	f(B,name),	(C,digit),	(D,ws),	(E,colon),	(F,eq),	(G,op),	(H,lt),	(I,gt),	0	(J,op),

(K,indent),	(L,ef),	(M,coloneq),	(N,comment),	(O,le),	(P,ne),	(Q,ge)g.

The	automaton	de	nit ion	is	given	in	Appendix	A.2.	Note	that	this	determinist ic	automaton	is	not	necessary	{	the	acceptance

funct ion	is	exact ly	the	same	for	non-determinist ic	and	determinist ic	automata.	It 	is	faster	to	compute	the	pre	x	with	a

determinist ic	automaton,	if	in	such	a	context 	of	exponent ial	complexity	the	concept	of	faster	has	any	meaning.	As	discussed	at

the	beginning	of	this	chapter,	a	scanner	has	the	task	of	split t ing	a	sequence	of	characters	into	a	sequence	of	pre-tokens

according	to	a	pre-token	class	speci	cat ion	and	the	principle	of	longest	match.	The	funct ion	to	split 	o	the	longest	pre	x	will	be

called	lop	(longest	pre	x)	and	the	funct ion	that	repeatedly	applies	lop	to	a	sequence	of	characters	will	be	called	split .	One

important	postcondit ion	on	lop	is	that 	it 	returns	the	longest	pre	x	possible.	That	is,	there	is	no	way	to	extend	the	pre	x	and	st ill

encounter	an	accept ing	state.	Another	postcondit ion,	on	the	result 	of	repeatedly	applying	the	funct ion	split ,	is	that 	retrieving	the

pre	xes	split 	o	the	tape	from	the	tokens	and	concatenat ing	them	together	will	result 	in	the	original	tape.	This	will	be	the	main

theorem	in	the	proof,	split -splits.	The	following	propert ies	about	an	implementat ion	of	split 	and	lop	need	to	be	proven:

4.2.4	Speci	cat ion	of

split

Longest	pre	x	is	a	pre	x	The	result 	of	applying	lop	to	a	tape	is	a	character	sequence	that

is	a	pre	x	of	the	tape.

Theorem:	pre	xp-lop

pre	xp	(lop	(nfsa	,	cc	,	tape),	tape)

Longest	pre	x	accept ing	The	result 	of	applying	lop	is	a	pre	x	that	is	accepted	by	the

Theorem:	accepts-lop

automaton	fsa	using	the	character	classes	de	ned	in	cc.	The	alphabet	of	the	automaton	is	the	range	of	the	character	class

mapping	given	in	cc.	(listp	(tape)	^	(lop	(nfsa	,	cc	,	tape)	6=	nil))	!	accept	(nfsa	,	cc	,	lop	(nfsa	,	cc	,	tape))

Longest	pre	x	is	the	longest	There	are	no	pre	xes	of	the	tape	which	are	longer	than	lop

that	are	also	accept ing	pre	xes.

Theorem:	accept ing-pre	x-is-longest

(listp	(tape)	^	(lop	(nfsa	,	cc	,	tape)	6=	nil))	!	longestp	(lop	(nfsa	,	cc	,	tape),	all-accept ing	(all-pre	xes	(tape),	nfsa	,	cc))

Lossless	order	preservat ion	The	values	of	the	tokens	in	the	token	sequence	constructed

Theorem:	split -splits

by	split 	can	be	concatenated	in	order	to	be	exact ly	the	same	as	the	input	character	sequence.	plistp	(tape)	!	(collect-values

(split 	(nfsa	,	cc	,	tape))	=	tape)

4.2.	SPLITTING	OFF	PRE-TOKENS

55

4.2.5	Implementat ion	of

split

A	number	of	libraries	were	used	in	the	development	of	the	proof.	In	order	to	keep	the	proof	as	small	as	possible,	they	have	been

factored	out	and	only	the	necessary	de	nit ions	and	lemmata	are	included	here.	Only	a	descript ion	of	the	necessary	events	is

included	here	because	of	space	concerns,	the	complete	events	can	be	obtained	from	the	URL	given	on	page	3.

List 	events

These	events	are	from	a	lists	library.

length

determines	the	length	of	a	list 	states	that	there	are	no	lists	of	length	zero4.

nlistp

equal-length-0	length-nlistp

states	the	same	fact 	a	bit 	di	erent ly:	anything	that	has	the	property	has	length	zero.

length-cons	states	plist

that 	the	length	of	a	list 	increases	by	1	if	cons	adds	an	element.

is	a	constructor	for	a	proper	list .	That	is,	something	that	is	either	a	list 	with	nil	as	the	last 	cdr	or	is	exact ly	nil.

plistp

is	a	recognizer	for	proper	lists.	that 	the	only	non-list 	which	is	a	plist 	is	nil.	that 	applying	plist 	to	a	proper	list 	results	in	the	same	list .

plistp-nlistp	states	equal-plist 	states	append-left -id	append-nil

is	the	left 	ident ity	for	the	funct ion	append.

states	that	appending	nil	to	anything	makes	a	proper	list 	out 	of	it .

Set	events

These	two	de	nit ions	are	from	a	library	on	set	theory.	Since	there	is	no	set	data	type,	sets	must	be	implemented	as	lists.

determines	if	all	elements	of	the	rst 	parameter	are	elements	of	the	second	list .	It 	is	perhaps	misnamed	and	should	be	called

subbagp,	since	no	check	is	made	if	either	of	the	parameters	contains	duplicate	elements.

subsetp	setp

checks	that	there	are	no	duplicate	elements	in	a	list .

Associat ion	list 	events

These	two	de	nit ions	are	from	the	alist 	(associat ion	list)	library.	They	are	used	for	the	representat ion	of	nal	states	and

recognized	pre-token	classes.

domain	alistp

4

selects	the	domain	elements	from	an	associat ion	list .	is	a	recognizer	for	associat ion	lists.

This	is	because	in	the	Boyer-Moore	logic	nil	and	other	literal	atoms	are	not	lists.	So	if	anything	has	length	of	zero,	then	it 	cannot

be	a	list .

56

CHAPTER	4.	SCANNING

Automata	events

These	events	are	taken	from	the	nite	state	automaton	equivalence	proof	and	have	been	slight ly	modi	ed	to	accommodate	the

(state,	name)	pairs	used	to	remember	the	accept ing	pre-token	class	name.	is	a	recognizer	for	nite	state	automata.	The	start

state	must	be	a	member	of	the	states	and	the	domain	of	the	nals	must	be	a	subset	of	the	states.	The	states	and	the	nals	must

be	proper	sets.

fsap	mk-transit ion	constructs	state	input	nexts

a	transit ion	from	a	state	on	an	input	to	a	set 	of	next	states.

selects	the	state	component	of	a	t ransit ion.	selects	the	input	component	of	a	t ransit ion.	selects	the	next	states	component	of	a

transit ion.

t ransit ionp	is	wf-table	is	ndfsap

a	recognizer	for	a	well-formed	transit ion	with	respect	to	the	set	of	states	and	the	alphabet.	a	recognizer	for	a	t ransit ion	table

that	is	well	formed	with	respect	to	the	set	of	states	and	the	alphabet.	is	a	recognizer	for	a	non-determinist ic	nite	state

automaton,	which	is	a	nite	state	automaton	with	a	well-formed	table.

next-state

a	table.

nds	the	set	of	next	states	from	a	state	on	an	input	symbol	with	respect	to	nds	the	set	of	next	states	for	a	list 	of	states.

next-states-list

Accept ing	Regular	Expressions

Since	the	structure	of	the	nal	states	set	was	changed	from	a	set	of	states	to	a	set 	of	(state,	name)-pairs,	the	acceptance

funct ion	has	to	be	adapted.	In	addit ion,	the	automaton	transit ions	are	not	direct ly	on	a	character	but	on	a	character	class,	so

that	each	character	in	the	tape	must	be	transformed	to	the	appropriate	character	class	before	it 	is	looked	up	in	the	automaton

table	with	next-states-list .

cc-name

looks	up	the	character	class	name	for	a	character.	selects	the	regular	expression	names	for	one

state	in	the	set	of	nals.

all-regular-expressions-for-state

all-regular-expressions	cdrs	down	accept1

the	list 	of	states	collect ing	the	regular	expression	names,	if	they	are	members	of	the	set	of	nals.	runs	the	tape	against 	the	table

by	start ing	with	the	start 	states,	t ransforming	each	character	in	turn	into	a	character	class,	and	determining	the	next	set 	of

reachable	states.	When	the	input	has	been	exhausted,	each	state	in	the	reached	states	is	examined.	If	it 	is	in	the	domain	of	the

nal	states,	then	the	corresponding	regular	expression	is	collected	into	a	list .	If	there	are	more	than	one,	the	rst 	in	the	list 	will	be

returned	by	accept1.

4.2.	SPLITTING	OFF	PRE-TOKENS

accept ing-regular-expressions	is	FSA	for	calling	accept1.	accept	is

57	a	wrapper	funct ion	that	selects	out	the	parts	of	the

the	outer	acceptance	funct ion	that	returns	a	list 	of	regular	expressions	causing	acceptance.

Longest	Accept ing	Pre	x

The	following	funct ion	de	nit ions	are	necessary	for	the	implementat ion	of	the	funct ion	lop,	which	determines	the	longest

accept ing	pre	x	of	a	tape.	of	a	tape.

consl	conses

x	onto	every	element	in	l	and	is	the	basis	for	construct ing	all	the	pre	xes

returns	the	list 	of	all	pre	xes	of	a	tape	without	the	nil	pre	x.	The	list 	happens	to	be	sorted	with	the	longest	pre	x	rst ,	but 	this	fact

is	not	used	in	the	proof.	This	would,	however,	present	an	opportunity	for	making	the	scanning	a	bit 	more	e	cient,	since	one	would

only	need	to	check	pre	xes	unt il	an	accept ing	one	is	found,	which	would	be	the	longest	one.

all-prefixes	all-accept ing	cdrs

down	a	list 	of	tapes	and	returns	a	list 	of	those	tapes	which	are	accepted	by	the	NFSA.

longest1	remembers	the

rst 	longest	member	seen	up	unt il	this	point .	It 	checks	the	top	of	the	rest 	to	see	if	it 	is	longer	and	if	so,	uses	this	for	the	recursive

call.	It 	cdrs	down	the	list 	and	returns	the	longest-to-date	when	the	list 	has	been	exhausted.	If	two	members	are	of	equal	length,

then	the	rst 	one	is	kept	on	as	the	longest	member	to	date.	Thus,	the	result 	of	this	funct ion	is	the	rst 	member	that	has	maximal

length5	.

longest

date.

lop

calls	longest1	with	the	list 	and	the	rst 	member	of	the	list 	as	the	longest-to-

looks	through	all	the	pre	xes	of	a	tape	and	determines	the	ones	that	are	accept ing.	From	this	set 	the	longest	is	selected	and

returned.

Definit ion:

lop	(nfsa	,	cc	,	tape)	=	longest	(all-accept ing	(all-pre	xes	(tape),	nfsa	,	cc)))

Split t ing	a	Character	Sequence

Once	the	longest	accept ing	pre	x	has	been	found	something	useful	must	be	done	with	it ,	i.e.	nd	the	name	of	the	token	class	that

it 	belongs	to	and	construct 	a	pre-token	with	that	informat ion.	The	same	representat ion	will	be	used	for	pre-tokens	and	tokens,

namely	a	shell	called	mk-token.	The	literal	atom	nil	represents	the	empty	token,	and	a	funct ion	tokenp	is	de	ned	to	be	a

recognizer	funct ion	for	tokens.	There	are	two	components,	a	name	and	a	value	component,	that 	have	default 	values	of	zero.

The	funct ion	longest-prefix-token	constructs	the	pre-token	from	the	pre	x	by	determining	which	regular	expression	accepted	it .

5	The	funct ion	probably	should	have	been	called	first-maximal,	the	name	longest1	is	an	often	found	naming	convent ion	in

NQTHM	proofs.	This	inner	funct ion	is	the	real	recursive	funct ion,	but	it 	often	needs	to	be	set	up	in	some	manner.	The	wrapper

funct ion	is	given	the	expected	name	and	the	inner	funct ion	is	given	a	su	x	of	1.

58

CHAPTER	4.	SCANNING

Since	accept ing-regular-expressions	always	returns	a	list 	{	although	there	should	only	be	one	member	in	the	list 	{	it 	is	necessary

to	use	car	to	select 	the	rst 	element	from	this	list .

Event:	Start 	with	the	init ial	nqthm	theory.	Event:	Add	the	shell	mk-token	,	with	recognizer	funct ion	symbol	tokenp	and	2

accessors:

token-name	,	with	type	restrict ion	(none-of)	and	default 	value	zero	token-value	,	with	type	restrict ion	(none-of)	and	default 	value

zero.

Definit ion:

longest-pre	x-token	(nfsa	,	cc	,	pre	x)	=	mk-token	(car	(accept ing-regular-expressions	(nfsa	,	cc	,	pre	x)),	pre	x)	In	order	to	split

the	tape,	a	funct ion	for	removing	successful	pre	xes	from	the	tape	is	needed,	remove-common-prefix.	In	order	for	the	funct ion	to

be	used	in	the	recursive	call	of	split ,	it 	must	be	shown	that	applying	remove-common-prefix	results	in	something	that	is	smaller

with	respect	to	some	order,	here	lessp.	Such	terminat ion	arguments	are	common	for	complex	funct ions.

Definit ion:

remove-common-pre	x	(a	,	b)	=	if	a	'nil	then	b	elseif	b'	nil	then	nil	elseif	car	(a)	=	car	(b)	then	remove-common-pre	x	(cdr	(a),	cdr

(b))

else	nil	endif

Theorem:	remove-common-pre	x-lessp

(pre	xp	(a	,	b)	^	listp	(a)	^	listp	(b))	!	((length	(remove-common-pre	x	(a	,	b))	<	length	(b))	=	t)

If	lop	ever	delivers	a	longest	pre	x	of	length	0,	the	tape	has	a	lexicographic	error	in	it .	This	will	be	denoted	by	construct ing	a	nal

pre-token	with	token	class	name	lexicographic-error	and	the	value	containing	the	rest 	of	the	unscanned	tape.	This	is	necessary

so	that	the	ent ire	tape	can	be	retrieved	from	the	split 	result ,	even	if	it 	is	in	error.

Definit ion:

split 	(nfsa	,	cc	,	tape)	=	if	tape	'	nil	then	tape	else	let 	pre	x	be	lop	(nfsa	,	cc	,	tape)

in	if	length	(pre	x)	=	0	then	cons	(mk-token	('lexicographic-error,	tape),	nil)	else	cons	(longest-pre	x-token	(nfsa	,	cc	,	pre	x),

split 	(nfsa	,	cc	,	remove-common-pre	x	(pre	x	,	tape)))	endif	endlet 	endif

split

4.2.6	Proof	of	correctness	for

The	proof	of	correctness	for	this	implementat ion	of	split 	will	now	be	discussed	in	detail.

4.2.	SPLITTING	OFF	PRE-TOKENS

59

Result 	is	a	Pre	x

The	rst 	goal	is	to	prove	that	lop	provides	a	pre	x	of	tape.	For	this	the	concept	of	a	being	a	pre	x	of	b	must	be	de	ned.	A	funct ion

prefixp	will	cdr	down	a	and	b	in	step,	checking	that	the	cars	of	each	list 	are	equal.	If	a	\runs	out"	T	will	be	returned,	which	means

that	nil	and	any	literal	atoms	are	pre	xes	of	anything.	If	b	should	run	out	before	a	does,	then	a	is	not	a	pre	x	and	F	is	returned.

Definit ion:	pre	xp	(a	,	b)	=	if	a	'	nil	then	t 	elseif	listp	(b)	then	if	car	(a)	=	car	(b)	then	pre	xp	(cdr	(a),	cdr	(b))

else	f	endif	else	f	endif

prefixp	is	re	exive	and	transit ive,	although	the	re	exivity	is	not	necessary	for	further	proofs,	and	it 	can	also	be	shown	that	if	a	is

the	pre	x	of	b	and	b	of	a	and	both	are	proper	lists,	then	a	=	b.	Such	lemmata	are	extremely	bad	rewrite	rules,	however,	and	are

thus	commented	out	in	the	script .

Theorem:	pre	xp-re	exive

pre	xp	(a	,	a)

Theorem:	pre	xp-transit ive

(pre	xp	(a	,	b)	^	pre	xp	(b	,	c))	!	pre	xp	(a	,	c)

The	funct ions	all-prefixes,	all-accept ing,	longest1	and	longest	must	also	be	shown	as	not	changing	the	prefixp-ness	of	their

parameters.	A	funct ion	all-prefixp	is	constructed,	which	states	that	all	members	of	a	list 	have	the	property	prefixp	to	help	us

state	and	prove	these	facts.

Definit ion:

all-pre	xp	(l	,	full)	=	if	l	'	nil	then	t 	else	pre	xp	(car	(l),	full)	^	all-pre	xp	(cdr	(l),	full)	endif

Theorem:	all-pre	xp-all-pre	xes

all-pre	xp	(all-pre	xes	(tape),	tape)	all-pre	xp	(x	,	y)	!	all-pre	xp	(all-accept ing	(x	,	nfsa	,	cc),	y)	(all-pre	xp	(rest 	,	tape)	^	pre	xp

(longest-to-date	,	tape))	!	pre	xp	(longest1	(rest 	,	longest-to-date),	tape)	all-pre	xp	(l	,	tape)	!	pre	xp	(longest	(l),	tape)

Theorem:	all-pre	xp-all-accept ing	Theorem:	pre	xp-longest1

Theorem:	pre	xp-longest

60

CHAPTER	4.	SCANNING

To	prove	that	lop	returns	a	pre	x	of	tape,	it 	must	rst 	be	proven	that	the	inner	part 	of	the	opened	up	version	of	lop	contains	all	pre

xes,	and	then	the	prover	must	be	guided	to	now	use	the	theorem	prefixp-longest	on	exact ly	this	pattern.	Then	prefixp-lop	can	be

proven	with	simpli	cat ion.	Without	the	\use"	hint 	the	prover	starts	o	down	a	wrong	induct ion	path,	then	chooses	a	wrong

generalizat ion,	and	proceeds	further	down	an	in	nite	subgoal	generat ion	chain.

Theorem:	all-pre	xp-all-accept ing-all-pre	xes	Theorem:	pre	xp-lop

all-pre	xp	(all-accept ing	(all-pre	xes	(tape)	,	nfsa	,	cc),	tape)	pre	xp	(lop	(nfsa	,	cc	,	tape),	tape)

Result 	is	Accept ing

The	same	tact ic	has	to	be	applied	to	show	that	the	result 	is	an	accept ing	pre	x.	The	not ion	of	all	tapes	in	a	list 	being	accept ing

ones	must	be	de	ned,	and	it 	must	be	shown	that	this	is	not	a	ected	by	other	funct ions	such	as	select ing	the	longest	one.	accept-

all	(l	,	nfsa	,	cc)	=	if	l	'	nil	then	t 	else	accept	(nfsa	,	cc	,	car	(l))	^	accept-all	(cdr	(l),	nfsa	,	cc)	endif

Theorem:	member-accept-all-accepts	Theorem:	accept-all-all-accept ing	Definit ion:

(accept-all	(l	,	nfsa	,	cc)	^	(p	2	l))	!	accept	(nfsa	,	cc	,	p)	accept-all	(all-accept ing	(x	,	nfsa	,	cc),	nfsa	,	cc)

The	result 	of	applying	the	funct ion	longest	to	a	list 	is	member	of	the	list .

Theorem:	member-longest1	Theorem:	member-longest

(longest1	(x	,	z)	6=	z)	!	(longest1	(x	,	z)	2	x)	listp	(l)	!	(longest	(l)	2	l)

Now	it 	is	not	t rue	that	all	results	of	lop	are	accept ing	pre	xes	because	the	tape	can	be	in	error	with	respect	to	the	FSA.	So	the

theorem	must	state	that	if	the	longest	pre	x	is	not	nil,	then	it 	accepts.	An	auxiliary	lemma	is	needed	for	this,	called	helper6.	Note

that	the	funct ion	longest	returns	the	rst 	longest	pre	x	as	discussed	above.

Theorem:	helper

(accept-all	(l	,	nfsa	,	cc)	^	listp	(l))	!	accept	(nfsa	,	cc	,	longest	(l))	(listp	(tape)	^	(lop	(nfsa	,	cc	,	tape)	6=	nil))	!	accept	(nfsa	,	cc

,	lop	(nfsa	,	cc	,	tape))

6

Theorem:	accepts-lop

It 	takes	a	long	t ime	to	prove	helper,	which	means	that	t rying	to	prove	it 	on	a	slow	machine	will	tend	to	make	one	stop	it 	and	look

for	other	auxiliary	lemmata.	However	on	a	Pent ium-90	with	LINUX,	the	prover	is	so	fast 	that 	one	cannot	follow	the	unfolding

proof,	and	this	theorem	goes	through	in	a	ash!

4.2.	SPLITTING	OFF	PRE-TOKENS

61

Result 	is	Longest

In	order	to	check	that	the	implementat ion	of	longest	is	correct ,	we	must	specify	what	the	concept	means.	It 	is	that 	there	does

not	exist 	any	element	in	the	list 	with	length	greater	than	the	length	of	the	result 	of	the	longest	funct ion.	In	order	to	skirt 	this

negat ive	existent ial	quant i	cat ion,	the	funct ion	none-larger	can	be	constructed	as	a	witness	to	the	non-existence	of	a	longer

element	in	l	than	x.	The	funct ion	longestp	states	that	x	is	the	longest	element	of	l	if	x	is	a	member	of	l	and	there	is	no	longer

element.	The	proof	of	the	theorem	accept ing-prefix-is-longest	is	interest ing	in	that	it 	successfully	uses	generalizat ion	three

t imes,	an	unusual	circumstance.

Definit ion:

none-larger	(x	,	l)	=	if	l	'	nil	then	t 	elseif	length	(x)	<	length	(car	(l))	then	f	else	none-larger	(x	,	cdr	(l))	endif

Definit ion:	longestp	(x	,	l)	=	((x

2	l)	^	none-larger	(x	,	l))

Theorem:	not-lessp-length-longest1-other

length	(longest1	(v	,	z))	6<	length	(z)	none-larger	(longest1	(v	,	z),	v)

Theorem:	none-larger-longest1	Theorem:	accept ing-pre	x-is-longest

(listp	(tape)	^	(lop	(nfsa	,	cc	,	tape)	6=	nil))	!	longestp	(lop	(nfsa	,	cc	,	tape),	all-accept ing	(all-pre	xes	(tape),	nfsa	,	cc))

split 	splits	The	main	theorem	about	the	funct ion	split 	is	that 	it 	splits	the	ent ire	tape.	Nothing	disappears	or	is	inserted	into	the

tape.	A	funct ion	must	be	de	ned	to	collect 	up	the	value	port ions	of	a	list 	of	tokens,	appending	them	in	the	order	encountered.	A

number	of	lemmata	about	the	interact ions	of	collect-values,	remove-common-prefix,	and	append	must	be	proven.

Definit ion:

collect-values	(toklist)	=	if	toklist 	'	nil	then	toklist 	elseif	:	tokenp	(car	(toklist))	then	'not-a-token-list 	else	append	(token-value

(car	(toklist)),	collect-values	(cdr	(toklist)))	endif

Theorem:	plistp-remove-common-pre	x	Theorem:	collect-values-cons

plistp	(tape)	!	plistp	(remove-common-pre	x	(a	,	tape))	tokenp	(a)	!	(collect-values	(cons	(a	,	b))	=	append	(token-value	(a),

collect-values	(b)))	pre	xp	(a	,	b)	!	(append	(a	,	remove-common-pre	x	(a	,	b))	=	b)

Theorem:	append-remove-common-pre	x

62

CHAPTER	4.	SCANNING

The	induct ion	structure	is	rather	nasty	and	was	not	discovered	by	the	prover	on	its	own.	A	funct ion	must	be	de	ned	that	has	the

needed	structure	and	the	prover	forced	to	use	an	induct ion	scheme	based	on	this	structure.	The	use	of	generalizat ion	must	be

turned	o	,	which	is	at tempted	before	induct ion	during	a	proof	at tempt,	and	which	will	destroy	the	validity	of	the	theorem

statement.	During	the	proof	at tempt	it 	was	discovered	that	it 	is	not	enough	for	the	tape	to	be	a	list ,	it 	must	be	a	proper	list 	so

that	the	retrieval	constructs	a	tape	that	is	equal	(and	not	only	equivalent).

Definit ion:

split -splits-hint 	(nfsa	,	cc	,	tape)	=	if	(tape	'	nil)	_	(lop	(nfsa	,	cc	,	tape)	'	nil)	then	t 	else	cons	(lop	(nfsa	,	cc	,	tape),	split -splits-hint

(nfsa	,	cc	,	remove-common-pre	x	(lop	(nfsa	,	cc	,	tape),	tape)))	endif

Theorem:	split -splits

plistp	(tape)	!	(collect-values	(split 	(nfsa	,	cc	,	tape))	=	tape)

Much	can	be	learned	by	re	ect ing	on	errors.	This	proof,	which	seems	smooth	and	almost	t rivial	when	presented,	was	not

discovered	quickly.	The	rst 	at tempt	mixed	in	all	the	problems	in	scanning	that	are	not	expressible	with	regular	expressions.	This

resulted	in	such	chaos	that	a	separat ion	of	concerns	was	deemed	necessary.	That	was	quite	useful,	as	I	then	only	had	to

concentrate	on	the	split t ing	of	the	tape	into	pre-token	representat ion	strings.	Even	this	was	not	a	t rivial	task.	Much	energy	was

concentrated	on	determining	a	good	speci	cat ion	for	scanning	and,	since	regular	expressions	are	so	dominant,	it 	was	at tempted

to	show	the	exact	relat ionship	between	a	regular	expression	and	the	result ing	pre-token	representat ion.	This	seemed	to	be

easier	to	do	with	a	scanner	interpreter,	which	would	\interpret"	each	regular	expression	against 	the	tape,	nding	the	longest	pre	x

to	match	each	regular	expression,	and	then	nding	the	longest	pre	x	in	this	collect ion.	The	not ion	of	\matching",	when	a	regular

expression	matches	up	with	a	sequence	of	characters,	was	de	ned.	It 	seemed	so	trivial,	and	trivial	proofs	such	as	the	prefixp

ones	were	easy	to	do.	But	the	main	theorem,	split -splits	would	not	go	through,	no	matter	how	much	e	ort 	was	expended.	After	a

long	t ime	a	chance	test 	done	for	a	demonstrat ion	for	my	students	discovered	a	major	error	in	the	scanner	interpreter.	Since	I

make	my	students	comment	their	code,	the	example	constructed	for	a	demonstrat ion	of	the	implemented,	but	not	yet 	proven,

scanner	was	given	a	comment	{	and	I	discovered	that	the	star	operator	following	a	concatenat ion	was	not	implemented

correct ly.	With	this	xed	up	split -splits	was	able	to	be	proven	correct .	But	it 	was	st ill	wrong,	and	the	problem	was	with	the

funct ion	matches.	It 	had	only	been	proven	that	a	matching	pre	x	was	split 	o	,	but 	the	implementat ion	of	matching	was	not	correct

{	there	exist 	pre	xes	that	are	actually	matched	by	a	regular	expression	that	were	not	recognized	by	the	matcher.	The	scanner

did	not	return	pre-tokens	which	were	not	pre	xes	or	did	not	match,	but	they	were	not	always	the	longest	ones	which	could	have

been	found.	This	is	such	a	subt le	area	that	it 	needs	to	be	discussed	in	much	more	detail.	It 	turned	out	that 	it 	had	been	assumed

that	longest	match	distributes	through	concatenat ion.	That	is,	for	the	funct ion	longest-match,	de	ned	as

longest-match	(r	:	regular-expression,	s	:	string)	lm	:	string

4.2.7	An	Incorrect 	Implementat ion

4.2.	SPLITTING	OFF	PRE-TOKENS

63

post	pre	xp	(lm,	s)	^	matches	(r,	lm)	^	(:	9	t 	pre	xp(t ,s)	^	matches	(r,t)	^	length	(t)	>	length	(lm))

I	had	assumed	that	(LM1)	longest	;	match(r1	_	r2	s)	=	longest	;	match(r1	snlongest	;	match(r2	s))	But	this	does	not	even	hold	for
a	match,	much	less	for	the	longest	match,	because	it 	does	not	distribute	when	one	of	the	part icipat ing	part ial	regular

expressions	contains	the	\or"	operator	+.	This	can	be	seen	in	the	following	example.	For	the	regular	expression	R	and	the	string

S	R	=	(dog	+	doggy)	(bag	+	gybagel)	S	=	\doggybagels"	the	longest	match	would	be	longest-match	(R,	S)	=	\doggybag"	by

(LM1).	In	fact ,	there	is	a	longer	match	for	R	on	S,	\doggybagel".	That	is,	in	order	to	nd	the	longest	match	for	a	concatenated

regular	expression,	it 	is	not	su	cient	to	take	the	longest	for	each	part 	and	concatenate	them.	All	pre	xes	of	S	have	to	be

generated	and	checked	for	a	match	with	the	regular	expression	R,	and	then	the	longest	of	the	result 	is	to	be	chosen.	This

problem	has	been	noted	in	the	work	of	Kolyang	and	Wol	in	a	discussion	of	program	synthesis	for	the	scanning	problem	found	in

KW95].	As	Burkhart 	Wol	explained	in	a	private	correspondence	we	conducted	per	email	on	the	\doggybagel"	problem,	they	too

had	to	synthesize	similar	predicates.	They	synthesize	prematch	which	computes	matched	pairs	of	pre	xes	and	matching	regular

expressions	without	worrying	about	the	longest	one.	This	is	only	possible	by	comput ing	all	pre	xes	and	then	trying	to	match	all

regular	expressions	to	each	pre	x.	They	use	a	technique	called	\	rst 	lter	fusion"	to	compute	these	pairs	in	one	sweep,	and	then

lter	out	the	longest	matching	pre	x.	In	a	later	stage	of	the	development,	all	the	parts	of	the	computat ion	direct ly	related	to	the

regular	expressions	are	factored	out	into	one	funct ion,	which	turns	out	to	be	the	state-transit ion	funct ion	which	can	be	stored

into	an	array.	This	step	assures	that	once	the	array	has	been	precomputed	and	a	labelling	for	all	regular	expressions	that	may

occur	during	the	set-decomposit ion	takes	place,	the	actual	matching	can	be	performed	rather	e	cient ly.	With	this	insight	an

attempt	was	made	to	implement	a	correct 	matching	funct ion	as	a	regular-expression	interpreter	in	the	Boyer-Moore	logic.	This

turned	out	to	be	a	massively	mutually	recursive	set	of	funct ion	de	nit ions	that	needed	to	be	combined	into	a	wrapper	funct ion

with	a	tag	for	determining	which	funct ion	is	current ly	act ive,	the	union	of	all	necessary	parameters,	and	a	clock	for	terminat ion.	It

is	extremely	di	cult 	to	understand	this	de	nit ion,	much	less	prove	propert ies	about	it .	Since	theorems	have	been	proven	for	the

equivalence	of	nondeterminist ic	and	determinist ic	automata	(see	Chapter	3),	the	funct ion	de	nit ions	are	available	for	running	an

automaton	to	check	acceptance	of	a	string.	The	speci	cat ion	for	the	scanner	was	rede	ned	to	be	not	the	regular	expressions

themselves,	but	an	automaton	which	has	been	constructed	from	the	regular	expressions.	The	automaton	can	be	constructed

from	the	set	of	regular	expressions	by	means	of	a	simple	algorithm	as	was	demonstrated	above.	Then	all	pre	xes	are	generated,

exact ly	as	in	the	program	synthesis	example,	and	each	is	checked	for	acceptance	by	one	of	the	automata.

64

CHAPTER	4.	SCANNING

This	excursion	demonstrates	the	need	to	be	absolutely	certain	that	the	predicates	used	for	the	speci	cat ion	of	the	behavior	of	a

funct ion	have	been	rigorously	checked	to	be	sure	that	they	indeed	state	what	is	intended.	If	care	is	not	taken	at 	this	point 	one

ends	up	with	a	mechanically	proven-correct 	implementat ion	that	is	incorrect 	in	the	sense	that	the	implementat ion	is	not	what

was	wanted.	The	method	proven	correct 	above	is	extremely	ine	cient.	For	each	pre	x	to	be	split 	o	,	all	possible	pre	xes	must	be

generated,	examined	for	acceptance,	and	all	accept ing	prexes	checked	in	order	to	determine	the	longest	one.	Thus	this	method

is	of	complexity	O(N)*O(N*O(acceptance))*O(N),	which	is	prohibit ively	slow	for	all	but 	the	smallest 	of	programs.	A	quick

opt imizat ion	that	could	easily	be	proven	equivalent	to	this	method	would	be	to	prove	and	then	make	use	of	the	fact 	that 	the	pre

xes	are	generated	in	reverse	length	order,	so	that	the	rst 	one	that	accepts	is	in	fact 	the	longest	one.	But	this	does	not	reduce

the	complexity.	An	more	e	cient	scanning	method	could	make	use	of	a	DFSA	that	either	only	contains	proper	t ransit ions	or	has	a

transit ion	to	a	special	error	state	for	all	non-proper	states	and	input	characters.	In	either	case	the	scanning	starts	at 	the	rst

character	in	the	sequence	and,	after	a	token	representat ion	has	been	recognized,	it 	cont inues	on	down	the	sequence,	looking	for

a	further	recognit ion.	If	the	sequence	terminates	or	if	no	proper	t ransit ion	exists	or	a	t ransit ion	to	an	error	state	has	taken	place,

then	the	last 	token	representat ion	recognized	is	returned	as	the	pre	x	to	be	split 	o	.	This	could	be	implemented	in	NQTHM	as

follows.	If	the	input	rest 	has	been	exhausted,	check	if	curr	happens	to	be	acceptable.	If	not ,	return	last 	because	there	might

have	been	a	previous	acceptance.	Leave	the	determinat ion	of	errors	to	the	funct ion	split ,	which	will	be	calling	this	one.	If	the

input	has	not	been	exhausted,	extend	the	pre	x	by	one	character	(which	is	of	course	also	a	pre	x)	and	recurse.	The	complexity

decreases	to	O(N*O(acceptance))*O(M),	with	M	the	number	of	tokens	in	the	sequence	of	N	characters,	which	is	better	but	st ill

not 	very	fast .	\Real"	scanners	tend	to	use	heurist ics	in	order	to	determine	when	to	abandon	the	cont inuing	scan,	for	example,

when	a	token	representat ion	is	known	not	to	be	a	pre	x	of	any	other	one.

Definit ion:

4.2.8	E	cient	Scanning?

lop-opt	(fsa	,	cc	,	rest 	,	curr	,	last)	=	if	rest 	'	nil	then	if	accept	(fsa	,	cc	,	curr)	then	curr	else	last 	endif	else	let 	extend	be	append

(curr	,	list 	(car	(rest)))

in	if	accept	(fsa	,	cc	,	extend)	then	lop-opt	(fsa	,	cc	,	cdr	(rest),	extend	,	extend)	else	lop-opt	(fsa	,	cc	,	cdr	(rest),	extend	,	last

)	endif	endlet 	endif

A	mechanical	proof	of	the	correctness	of	this	method	would	not	be	nearly	as	easy	to	conduct	as	the	proof	of	the	ine	cient

method	was,	because	the	act ivit ies	of	pre	x	product ion	and	pre	x	recognit ion	are	not	cleanly	separated	but	interleaved.	If	one

could	show	the	funct ional	equivalence	of	lop	and	lop-opt	however,	then	lop-opt	could	easily	be	subst ituted	and	the	proofs	given

here	could	be	reused.

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

65

4.3	Transforming	Pre-Tokens	into	Tokens

In	the	second	phase	of	the	scanning	process,	a	number	of	funct ions	are	applied	one	at 	a	t ime	to	the	pre-token	sequence.	The

term	`token'	will	be	used	to	mean	either	pre-token	or	token	in	this	context .	Each	funct ion	maps	token	lists	to	token	lists,	and	is

called	a	token	transformat ion	funct ion.	The	funct ions	perform	tasks	such	as	reclassifying	some	tokens,	for	example,	keywords,

or	convert ing	token	values	to	other	kinds	of	values.	These	tasks,	often	performed	\on	the	y"	during	tradit ional	scanning,	are	much

easier	to	prove	correct 	when	they	have	been	isolated	from	the	recognit ion	of	the	basic	token	classes.	Typical	token

transformat ion	funct ions	are	removing	whitespace	and	comments,	split t ing	a	name	token	class	into	keywords	and	ident i	ers,

convert ing	strings	represent ing	numbers	into	integer	or	real	values,	subst itut ing	a	special	token	for	each	member	of	an	operator

token	class,	nding	and	removing	cont inuat ions7,	replacing	a	string	with	its	length,	useful	for	determining	indentat ion	level,	and

convert ing	indentat ions	(needed	for	the	PLR	0	language,	for	example)	to	proper	begin-block	and	end-block	markers.	The	last

three	token	transformat ion	funct ions	are	tasks	that	are	peculiar	to	occam	2-like	languages	that	use	indentat ions	to	denote	block

structure.	The	following	speci	cat ions	are	for	the	PLR	0	token	transformat ion	funct ions.	Seven	token	transformat ion	funct ions

are	necessary	to	t ransform	the	tokens	that	are	recognized	by	the	split 	funct ion	into	tokens	that	t 	the	concrete	grammar	of	PLR

0	.	The	speci	cat ions	for	these	transformat ions	make	use	of	the	following	funct ions	and	operat ions:

4.3.1

toktrans

Speci	cat ion	for	PLR	0

tok.name	denotes	the	name	component	of	a	token	tok	tok.value	denotes	the	value	component	of	a	token	tok	index	returns	the

index	range	of	a	sequence	assoc(key,	table)	looks	up	the	value	of	key	in	table	mk-Token(name,	value)	constructs	a	token

consist ing	of	name	and	value	components	convert(str,	base)	converts	a	string	consist ing	of	digits	in	the	number	system	base	to

an

integer	value

length(s)	returns	the	length	of	the	string

Cont inuat ions	are	de	ned	in	the	occam	2	Reference	Manual	il88]:	\A	long	statement	may	be	broken	immediately	after	one	of	the

following:	an	operator,	a	comma,	a	semi-colon,	an	assignment,	or	the	keywords	IS,	FROM	or	FOR.	A	statement	can	be	broken

over	several	lines,	providing	the	cont inuat ion	is	indented	at 	least 	as	much	as	the	rst 	line	of	the	statement."	In	this	token

transformat ion	funct ion,	any	indentat ion	is	removed	that	immediately	follows	the	elements	from	the	list 	that 	are	contained	in

PLR	0.

7

66

CHAPTER	4.	SCANNING

levels	and	a	start ing	level	start 	(see	a	detailed	descript ion	of	this	funct ion	on	page	81)

di	-cycle(start ,	levels)	returns	a	list 	of	relat ive	indentat ions	for	a	list 	of	absolute	indentat ions	input-levels(toks)	returns	a	list

denot ing	absolute	statement	indentat ion	levels	output-levels(toks)	returns	a	list 	denot ing	relat ive	statement	indentat ion	levels

The	token	transformat ion	funct ions	are	speci	ed	as	postcondit ions	on	the	transformed	token	sequence.

toktrans1	:	remove	white	space	and	comments

There	should	be	no	white	space	or	comment	tokens	in	the	result .

toktrans1	(toks	:	Token)	result 	:	Token	post	:	9	i	2	index	result 	(result (i).name	=	WS

_	result (i).name	=	COMMENT)

The	character	value	of	the	operator	is	kept	in	the	token	value	so	that	a	retrieve	operat ion	can	reconstruct 	the	character

sequence	without	needing	the	table	for	reference.

toktrans2	:	replace	op	with	appropriate	token	name

toktrans2	(toks	:	Token)	result 	:	Token

post	let 	op-list 	=	f	(\+",	+),	(*",	*),	(\/",	/),	(\n",	REM),	(\?",	?),	(\!",	!),	(\(",	(),	(\)",)),	(\	",),	(\]",])	g	in	8	i	2	index	toks	if

toks(i).name	=	OP	then	result (i)	=	mk-Token	(assoc	(toks(i).value,	op-list),	else	result (i)	=	toks(i)

toktrans3	:	discriminate	keywords	and	ident i	ers

toks(i).value)

Again	the	character	value	of	the	key	words	and	indentat ions	is	kept	in	the	token	value	so	that	a	retrieve	operat ion	can

reconstruct 	the	character	sequence	without	needing	the	table	for	reference.	The	grammar	speci	ed	both	a	nonterminal	and	a

terminal	PROC.	The	two	will	be	di	erent iated	by	using	PROCKW	to	denote	the	keyword	PROC.

toktrans3	(toks	:	Token)	result 	:	Token

post	let 	kw-list 	=	f	(\AND",	AND),	(\CALL",	CALL),	(\FALSE",	FALSE),	(\IF",	IF),	(\INPUT",	INPUT),	(\INT",	INT),	(\NOT",

NOT),	(\OR",	OR),	(\OUTPUT",	OUTPUT),	(\PROC",	PROCKW),	(\REC",	REC),	(\SEQ",	SEQ),	(\SKIP",	SKIP),	(\STOP",

STOP),	(\TRUE",	TRUE),	(\WHILE",	WHILE)	g	in	8	i	2	index	toks	if	toks(i).name	=	NAME	then	if	assoc	(toks(i).value,	kw-list)	=

6	NIL	then	result (i)	=	mk-Token	(assoc	(toks(i).value,	kw-list),

toks(i).value)

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

67

else	result (i)	=	mk-Token	(IDENT,	toks(i).value)	else

result (i)	=	toks(i)

toktrans4	:	convert 	number	strings	to	integers	toktrans4	(toks	:	Token)	result 	:	Token	post	8	i	2	index	toks	if	toks(i).name	=

INTEGER

then	result (i)	=	mk-Token	(INTEGER,	else	result (i)	=	toks(i)

convert 	(toks(i).value,	10))

toktrans5	:	remove	cont inuat ions

post	let 	cont inuables	=	f	+	,	*	,	/	,	REM	,	?	,	!	,	-	,	:=	g	in	:	9	i,	j	2	index	toks,	j	=	i+1	toks(i).name	2	cont inuables	^	toks(j).name	=

INDENT

toktrans6	:	replace	indentat ion	value	with	number	of	blanks	toktrans6	(toks	:	Token)	result 	:	Token	post	8	i	2	index	toks	if

toks(i).name	=	INDENT

toktrans5	(toks	:	Token)	result 	:	Token

then	result (i)	=	mk-Token	(INDENT,	else	result (i)	=	toks(i)

length	(toks(i).value)	-	1)

toktrans7	:	replace	absolute	indentat ions	with	relat ive	ones	toktrans7	(toks	:	Token)	result 	:	Token	post	:	9	i	2	index	result

result (i).name	=	INDENT

^	di	-cycle	(0,	input-levels	(toks))	=	output-levels	(result)

4.3.2

toktrans

Implementat ions	and	Proofs	for	PLR	0

In	order	to	state	a	correctness	predicate	for	this	port ion	of	the	scanning	process,	each	token	transformat ion	funct ion	should

have	a	retrieve	funct ion	from	its	output	back	to	a	normalized	form	of	the	input.	Possible	retrieve	funct ions	might	be	comput ing

number	values	of	normalized	digit 	strings	without	leading	zeros,	or	stat ing	a	relat ion	between	the	input	and	output	token

sequences.	The	token	transformat ion	funct ions	are	correct 	when	the	relat ion

retrieve(toktrans(tk))	=	normalize(tk)

can	be	shown	to	hold.

68

CHAPTER	4.	SCANNING

toktrans1	:	Remove	Whitespace	and	Comments

This	token	transformat ion	funct ion	is	for	removing	all	elements	of	certain	token	classes	from	the	token	sequence.	This	is	a	very

simple	funct ion	to	implement	and	prove	to	be	correct .	The	speci	cat ion	is	simply	a	list 	of	the	names	of	the	token	classes	to	be

removed.	It 	does	not	matter	if	names	appear	more	than	once	in	this	list .	The	funct ion	discard	is	an	implementat ion	of	this

funct ion.	The	discard-list 	parameter	is	a	list 	of	token	names	to	be	discarded.	The	token	name	for	each	token	in	the	input	token

sequence	is	checked	against 	the	discard	list :	if	the	token	is	included	in	the	list ,	it 	is	discarded.	Definit ion:	discard	(toks	,	discard-

list)	=	if	toks	'nil	then	toks	elseif	token-name	(car	(toks))	2	discard-list 	then	discard	(cdr	(toks),	discard-list)	else	cons	(car	(toks

),	discard	(cdr	(toks),	discard-list))	endif	The	rst 	correctness	predicate	states	that	any	tokens	not	on	the	discard	list 	remain

unchanged	and	are	in	the	same	order	as	before	the	applicat ion	of	discard.	Definit ion:	non-discards-undisturbed	(toks1	,	toks2	,

discard-list)	=	if	toks1'	nil	then	toks2	'nil	elseif	token-name	(car	(toks1))	62	discard-list 	then	(car	(toks1)	=	car	(toks2))	^	non-

discards-undisturbed	(cdr	(toks1),	cdr	(toks2),	discard-list)	else	non-discards-undisturbed	(cdr	(toks1),	toks2	,	discard-list)

endif	Theorem:	discard-does-not-disturb-non-discards	non-discards-undisturbed	(toks	,	discard	(toks	,	discard-list),	discard-list

)	The	second	predicate	states	that	after	applicat ion	of	discard,	no	tokens	with	a	name	on	the	discard	list 	remain.	Definit ion:	no-

discards-left 	(toks	,	discard-list)	=	if	toks'	nil	then	t 	elseif	token-name	(car	(toks))	2	discard-list 	then	f	else	no-discards-left 	(cdr

(toks),	discard-list)	endif	Theorem:	toktrans-1-main-theorem	no-discards-left 	(discard	(toks	,	discard-list),	discard-list)	Both

theorems	are	readily	proven.

toktrans2	:	Replace	op	with	Appropriate	Token	Name

This	proof	displayed	two	interest ing	aspects	of	the	interact ion	with	the	prover.	The	rst 	implementat ion	of	the	speci	cat ion

funct ion	and	the	token	transformat ion	funct ion	replace	was	expected	to	be	trivial	to	prove.	The	transformat ion	involves	looking

up	values	in	a	replacement	table	and	replacing	the	tokens	with	the	lookup	result .	The	speci	cat ion	had	stated	that,	after	replace,

none	of	the	tokens	that	were	to	be	removed	were	left 	in	the	token	sequence.	The	prover	t ried	to	prove	the	conjecture	for	a	case

with	a	replacement	table	such	as

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

'((hugo	.	emil)	(emil	.	anna))

69

Of	course,	the	speci	cat ion	is	patent ly	false	in	this	case:	all	occurrences	of	'emil	have	not	been	removed	from	the	token

sequence!	It 	is	impossible	to	determine	if	an	'emil	token	in	the	result 	token	sequence	is	there	because	the	transformat ion

funct ion	missed	replacing	an	'emil	with	an	'anna,	or	because	it 	is	a	replacement	for	'hugo.	This	degenerate	case	is	not	one	that

can	occur	in	the	speci	cat ions	for	PLR	0	,	but 	it 	is	theoret ically	possible	to	specify	such	a	case,	which	would	invalidate	the

theorem	as	rst 	stated.	A	new	speci	cat ion	had	to	be	writ ten	that	steps	through	the	token	sequence,	checking	if	the	replacement

has	been	properly	made	and	all	other	tokens	left 	equal.	This	speci	cat ion	was	easy	to	prove	to	be	correct 	with	respect	to	the

implementat ion.	In	order	to	check	the	implementat ion,	a	test 	case	was	run	through	replace	{	what	a	surprise	to	nd	that	nothing

had	been	transformed!	The	act ions	to	be	taken	had	been	completely	misstated,	but	in	a	consistent	way,	in	both	the

transformat ion	funct ion	and	in	the	speci	cat ion.	The	token	names	and	not	the	token	values	were	being	looked	up	in	the

replacement	table.	A	parameter	had	to	be	added	to	the	transformat ion	funct ion	to	determine	which	token	was	to	be	replaced,

and	then	the	look-up	was	done	using	the	token	value.	The	funct ion	replace	was	split 	into	two	funct ions	to	provide	a	considerable

run-t ime	opt imizat ion:	the	calculat ion	of	the	domain	of	the	replacement	mapping	table	need	only	be	done	once	instead	of	as

many	t imes	as	there	are	tokens	in	the	token	sequence.	The	character	representat ion	for	the	operator	token	has	been	left 	in	as

the	value	parameter.	This	apparent ly	unnecessary	informat ion	will	be	useful	when	the	tokens	in	a	parse	tree	are	printed	in	order

and	a	character	sequence	is	obtained	that	can	be	re-scanned,	parsed,	and	transformed,	result ing	in	the	same	tree.

Definit ion:

make-replace	(toks	,	name	,	dom	,	replace-list)	=	if	toks	'	nil	then	toks	elseif	(token-name	(car	(toks))	=	name)	^	(car	(token-

value	(car	(toks)))	2	dom)	then	cons	(mk-token	(value	(car	(token-value	(car	(toks))),	replace-list),	token-value	(car	(toks))),

make-replace	(cdr	(toks),	name	,	dom	,	replace-list))	else	cons	(car	(toks),	make-replace	(cdr	(toks),	name	,	dom	,	replace-list

))	endif

Definit ion:

domain	(map)	=	if	listp	(map)	then	if	listp	(car	(map))	then	cons	(car	(car	(map)),	domain	(cdr	(map)))	else	domain	(cdr	(map))

endif

else	nil	endif

Definit ion:

replace	(toks	,	name	,	replace-list)	=	if	listp	(replace-list)	then	let 	dom	be	domain	(replace-list)	make-replace	(toks	,	name	,

dom	,	replace-list)	endlet 	else	toks	endif

in

70

CHAPTER	4.	SCANNING

The	speci	cat ion	for	replace	is	replace-step,	which	rather	t rivially	restates	the	transformat ion	funct ion	as	a	predicate	on	two

lists.	The	statement	of	the	main	theorem	is	now	easily	stated	and	readily	proven,	and	the	funct ion	replace	has	also	been	tested.

Definit ion:

replace-step	(source	,	target	,	name	,	replace-list)	=	if	source	'	nil	then	target	'	nil	elseif	(token-name	(car	(source))	=	name)	^

(car	(token-value	(car	(source)))	2	domain	(replace-list))	then	(car	(target)	=	mk-token	(value	(car	(token-value	(car	(source))),

replace-list),	token-value	(car	(source))))	^	replace-step	(cdr	(source),	cdr	(target),	name	,	replace-list)	else	(car	(source)	=	car

(target))	^	replace-step	(cdr	(source),	cdr	(target),	name	,	replace-list)	endif

Theorem:	toktrans-2-main-theorem

(token-listp	(toks)	^	listp	(replace-list))	!	replace-step	(toks	,	replace	(toks	,	name	,	replace-list),	name	,	replace-list)

toktrans3	:	Discriminate	Key	Words	and	Ident i	ers

The	discriminat ion	between	key	words	and	ident i	ers	is	taken	care	of	with	the	token	transformat ion	funct ion	determine-key-

words.	A	token	name	is	speci	ed,	and	for	all	tokens	with	this	name,	if	the	token	value	is	in	the	domain	of	a	key	word	list ,	a	token

with	the	value	from	the	key	word	list 	replaces	that	token	if	the	value	is	not	in	the	domain,	a	token	constructed	from	a	default

token	name	and	the	token	value	replaces	the	token.	There	was	the	same	speci	cat ion	problem	in	this	t ransformat ion	as	in

toktrans2	.	It 	had	been	expected	that	the	token	name	specifying	the	tokens	to	be	discriminated	would	no	longer	be	in	the	result

token	sequence.	As	demonstrated	above,	this	is	not	the	case.	A	step	predicate	must	be	introduced	and	it 	must	be	proven	that

the	implementat ion	of	the	funct ion	ful	lls	the	step	predicate.	The	script 	for	this	t ransformat ion	is	quite	similar	to	the	one	for

toktrans2	.

Definit ion:

make-key-words	(toks	,	name	,	dom	,	key-words-list 	,	default)	=	if	toks	'	nil	then	toks	elseif	token-name	(car	(toks))	=	name

then	if	token-value	(car	(toks))	2	dom	then	cons	(mk-token	(value	(token-value	(car	(toks)),	key-words-list),	token-value	(car

(toks))),	make-key-words	(cdr	(toks),	name	,	dom	,	key-words-list 	,	default))	else	cons	(mk-token	(default 	,	token-value	(car

(toks))),	make-key-words	(cdr	(toks),	name	,	dom	,	key-words-list 	,	default))	endif	else	cons	(car	(toks),	make-key-words	(cdr

(toks),	name	,	dom	,	key-words-list 	,	default))	endif	determine-key-words	(toks	,	name	,	key-words-list 	,	default)	=	if	listp	(key-

words-list)	then	let 	dom	be	domain	(key-words-list)

Definit ion:

in

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

71

else	toks	endif

Definit ion:

make-key-words	(toks	,	name	,	dom	,	key-words-list 	,	default)	endlet

key-words-step	(source	,	target	,	name	,	key-words-list 	,	default)	=	if	source	'	nil	then	target	'	nil	elseif	token-name	(car	(source

))	=	name	then	if	token-value	(car	(source))	2	domain	(key-words-list)	then	(car	(target)	=	mk-token	(value	(token-value	(car

(source)),	key-words-list),	token-value	(car	(source))))	^	key-words-step	(cdr	(source),	cdr	(target),	name	,	key-words-list 	,

default)	else	(car	(target)	=	mk-token	(default 	,	token-value	(car	(target))))	^	key-words-step	(cdr	(source),	cdr	(target),	name

,	key-words-list 	,	default)	endif	else	(car	(source)	=	car	(target))	^	key-words-step	(cdr	(source),	cdr	(target),	name	,	key-

words-list 	,	default)	endif

Theorem:	toktrans-3-main-theorem

(token-listp	(toks)	^	listp	(key-words-list))	!	key-words-step	(toks	,determine-key-words	(toks	,	name	,	key-words-list 	,	default

),	name	,	key-words-list 	,	default)

toktrans4	:	Convert 	Number	Strings	to	Integers

The	funct ion	used	to	convert 	number	strings	to	integers	is	based	on	the	posit ional	notat ion	proof	in	WW90].	In	that	proof	two

funct ions,	nat-to-pn,	a	funct ion	that	converts	a	natural	number	to	a	list 	of	digits	with	respect	to	a	base,	and	pn-to-nat,	a	funct ion

that	converts	a	list 	of	digits	with	respect	to	a	base	to	a	natural	number,	are	shown	to	be	inverse	funct ions.	Since	that	proof

makes	use	of	an	extremely	large	set	of	libraries	{	lists,	bags,	and	natural	numbers	{	the	theorems	necessary	for	the	proof	have

been	extracted.	Many	can	be	readily	proven,	but	the	proofs	of	facts	about	remainder	and	quot ient	are	extremely	intricate.

Therefore	there	are	four	axioms	included	for	them,	which	can	easily	be	seen	to	be	true.	Should	one	want	the	proof	to	be	axiom

free,	then	the	libraries	must	be	loaded	and	the	rst 	part 	of	the	proof	script 	commented	out.	Either	way,	the	proofs	go	through,	but

they	are	much	slower	with	the	library	included.	The	necessary	theorems	from	the	naturals	library	(which	uses	the	lists	and	bags

libraries	in	its	proofs)	are	the	commutat ivity-of-plus,	equal-plus-0,	stat ing	that	if	the	sum	of	two	numbers	are	zero,	then	both

must	be	zero,	plus-zero-arg2,	a	statement	of	the	right 	ident ity	of	plus,	t imes-zero,	the	right 	zero	for	t imes,	equal-t imes-0,

another	statement	of	the	t imes	zero,	t imes-add1,	relat ing	t imes	and	add1,	plus-remainder-t imes-quot ient,	an	important	ident ity,

72

lessp-quot ient,	necessary

CHAPTER	4.	SCANNING

as	a	measure	for	some	funct ions,

the	commutat ivity-of-t imes,	and	quot ient-lessp-arg1,	stat ing	that	the	quot ient 	of	a	and	b	is	zero	if	a	<	b.	The	four	axioms	used

relate	remainder	and	quot ient	to	plus	and	t imes.

Axiom:	remainder-plus	Axiom:	quot ient-plus

((a	mod	c)	=	0)	!	(((b	+	a)	mod	c)	=	(b	mod	c))	((a	mod	c)	=	0)	!	(((b	+	a)

Axiom:	quot ient-t imes-instance

c)	=	((a

c)	+	(b

c)))

((y	x)

y)	=	if	y	'	0	then	0	else	x	(x)	endif

Axiom:	remainder-t imes1-instance

(((x	y)	mod	y)	=	0)	^	(((x	y)	mod	x)	=	0)	The	main	idea	of	this	token	transformat ion	funct ion,	called	integer-convert ,	is	to

traverse	the	token	list ,	convert ing	the	values	of	all	integer	tokens	to	be	the	natural	number	represented	by	the	digit 	sequence.

The	funct ion	has	been	implemented	and	proved	in	such	a	way	that	it 	will	be	easy	to	expand	the	proof	to	number	representat ions

that	use	bases	other	than	10.	The	rst 	de	nit ion	needed	is	a	funct ion	to	determine	the	set	of	tokens	e	ected	by	the

transformat ion.

Definit ion:

is-integer-token	(tok)	=	(token-name	(tok)	=	'integer)

just-digits-less-than-b

The	token	values	have	to	be	lists	of	digits	that 	do	not	exceed	the	given	base.	The	funct ion	checks	this	property.

Definit ion:

just-digits-less-than-b	(l	,	b)	=	if	listp	(l)	then	(car	(l)	2	N)	^	(car	(l)	<	b)	^	just-digits-less-than-b	(cdr	(l),	b)	else	l	=	nil	endif	The

funct ion	pn-to-nat	converts	a	posit ional	number	l	with	digits	of	base	b	to	a	natural	number.	The	funct ions	use	the	Horner	method

Knu81]	for	convert ing	between	natural	and	posit ional	numbers	in	order	to	avoid	having	to	cope	with	exponents.	This

necessitates	that	the	posit ional	numbers	be	\lit t le-endian",	the	least	signi	cant	digit 	must	be	the	rst 	element	of	the	list .	The

funct ion	reverse	can	be	used	on	the	token	value	of	integer	tokens	prior	to	calling	this	funct ion.	The	funct ion	integer-convert 	uses

base	10	for	calculat ing	the	natural	numbers.	An	error	is	returned	if	an	invalid	digit 	is	encountered	and	the	transformat ion

terminates	immediately,	returning	the	token	sequence	transformed	up	unt il	the	point 	of	the	error.	The	reversing	funct ion	and

some	facts	about	its	relat ionship	with	other	funct ions	are	stated	here.

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

Definit ion:

73

reverse	(l)	=	if	l	'	nil	then	nil	else	append	(reverse	(cdr	(l)),	list 	(car	(l)))	endif

Theorem:	plistp-reverse

plistp	(reverse	(a))

Theorem:	reverse-append	Theorem:	reverse-reverse

reverse	(append	(a	,	b))	=	append	(reverse	(b),	reverse	(a))	plistp	(l)	!	(reverse	(reverse	(l))	=	l)	These	are	the	conversion

funct ions:

pn-to-nat	(l	,	b)	=	if	listp	(l)	then	car	(l)	+	(pn-to-nat	(cdr	(l),	b)	b)

Definit ion:

else	0	endif

Definit ion:

integer-convert 	(toks)	=	if	toks	'	nil	then	toks	elseif	is-integer-token	(car	(toks))	then	let 	value	be	ascii-to-digits	(token-value	(car

(toks)))	integer-convert 	(cdr	(toks)))

in	if	just-digits-less-than-b	(value	,	base)	then	cons	(mk-token	(token-name	(car	(toks)),	pn-to-nat	(reverse	(value),	base)),	else

'token-error	endif	endlet

else	cons	(car	(toks),	integer-convert 	(cdr	(toks)))	endif

The	retrieve	funct ion	uses	nat-to-pn	for	convert ing	a	natural	number	to	a	posit ional	number.	Note	that	0	is	converted	to	nil.	If	it

were	converted	to'	(0),	this	would	be	a	posit ional	number	with	a	leading	zero!	This	precludes	the	use	of	induct ion	at 	one	point 	in

the	proof,	but 	since	other	rewrite	rules	can	be	formulated	to	avoid	this,	this	method	is	used.	The	only	other	way	would	be	to

normalize	all	posit ional	numbers	with	exact ly	one	leading	zero,	introducing	unnecessary	complexity.

Definit ion:

nat-to-pn	(n	,	b)	=	if	1	<	b	then	if	n	'	0	then	nil	else	cons	(n	mod	b	,	nat-to-pn	(n

else	nil	endif

b	,	b))	endif

During	the	rst 	test 	of	this	\proven	correct"	funct ion	it 	was	determined	that	the	speci	cat ions	were	not	t ight 	enough.	Each	digit

was	to	be	a	numberp.	This	was	true,	but	the	implementat ion	assumed	that	each	digit 	was	a	number	exact ly	corresponding	to

the	digit 	representat ion:	9	for	'9',	8	for	'8',	etc.	The	previous	token	transformat ion	funct ion	however,	does	nothing	to	change	the

representat ion	of	the	digits	from	their	original	form.	They	are	ASCII	encoded	digits	with	57	encoding	'9',	56	encoding	'8',	etc,

which	are	of	course	numberps,	but

74

CHAPTER	4.	SCANNING

not	decimal	digits.	The	speci	cat ion	had	to	be	modi	ed	to	specify	the	di	erent	digit 	forms	(valid-ascii-digit -p	and	valid-decimal-

digit -p)	as	well	as	the	conversion	funct ions	ascii-to-digit 	and	digit -to-ascii.	A	conversion	funct ion	is	applied	before	comput ing	the

digit 	value	in	integer-convert ,	integer-tokens-well-formed,	convert-back.	ascii-to-digit 	(ascii)	=	if	(ascii	<	ascii-zero)	_	(ascii-nine

<	ascii)	then	0	else	ascii	;	ascii-zero	endif	Definit ion:	ascii	-to-digits	(l)	=	if	l	'nil	then	l	else	cons	(ascii-to-digit 	(car	(l)),	ascii-to-
digits	(cdr	(l)))	endif	Definit ion:	digit -to-ascii	(digit)	=	(digit 	+	ascii-zero)	Definit ion:	digits-to-ascii	(digits)	=	if	digits'	nil	then	digits

else	cons	(digit -to-ascii	(car	(digits)),	digits-to-ascii	(cdr	(digits)))	endif	The	retrieve	funct ion	for	convert ing	the	numbers	back	to

a	list 	of	digits	is	convert-back.	Note	that	the	result 	must	be	reversed	before	the	token	is	constructed.

Definit ion:	Definit ion:

convert-back	(toks)	=	if	toks	'	nil	then	toks	elseif	is-integer-token	(car	(toks))	then	cons	(mk-token	(token-name	(car	(toks)),

reverse	(digits-to-ascii	(nat-to-pn	(token-value	(car	(toks)),	base)))),	convert-back	(cdr	(toks)))	else	cons	(car	(toks),	convert-

back	(cdr	(toks)))	endif

Theorem	(using	axioms):	inverse1

((1	<	b)	^	(n	2	N)	^	(b	2	N))	!	(pn-to-nat	(nat-to-pn	(n	,	b),	b)	=	n)	Leading	zeros	are	not	acceptable	in	a	well-formed	posit ional

notat ion	list ,	and	since	the	numbers	are	in	reverse	order,	the	last 	digit 	must	not	be	zero.

Definit ion:

lastdigit 	(l)	=	if	listp	(l)	then	if	cdr	(l)	6=	nil	then	lastdigit 	(cdr	(l))	else	car	(l)	endif

else	f	endif

Definit ion:	no-leading-zeros	(l)	=	(lastdigit 	(l)	6=	digit -zero)

All	the	propert ies	of	a	well-formed	posit ional	number	are	collected	into	one	de	nit ion.

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

well-formed-pn	(l	,	b)	=	((1	<	b)	^	plistp	(l)	^	(b	2	N)	^	no-leading-zeros	(l)	^	just-digits-less-than-b	(l	,	b))

Definit ion:

75

This	is	the	interest ing	inverse	funct ion,	which	is	only	valid	for	numbers	without	leading	zeros	and	containing	only	digits	less	than

the	base,	which	itself	must	be	greater	than	one.

Theorem	(using	axioms):	inverse2

well-formed-pn	(l	,	b)	!	(nat-to-pn	(pn-to-nat	(l	,	b),	b)	=	l)	The	statement	of	correctness	for	the	token	transformat ion	funct ion

integer-convert 	is	given	by	stat ing	a	retrieve	funct ion,	convert-back	and	proving	that	the	two	are	inverse	funct ions	on	well-

formed	input.	integer-tokens-well-formed	(toks)	=	if	toks	'	nil	then	t 	elseif	is-integer-token	(car	(toks))	then	no-leading-zeros

(reverse	(ascii-to-digits	(token-value	(car	(toks)))))	^	valid-ascii-digits-p	(token-value	(car	(toks)))	^	just-digits-less-than-b

(reverse	(ascii-to-digits	(token-value	(car	(toks)))),	base)	^	plistp	(ascii-to-digits	(token-value	(car	(toks))))	^	integer-tokens-

well-formed	(cdr	(toks))	else	integer-tokens-well-formed	(cdr	(toks))	endif

Definit ion:	Definit ion:

convert-back	(toks)	=	if	toks	'	nil	then	toks	elseif	is-integer-token	(car	(toks))	then	cons	(mk-token	(token-name	(car	(toks)),

reverse	(digits-to-ascii	(nat-to-pn	(token-value	(car	(toks)),	base)))),	convert-back	(cdr	(toks)))	else	cons	(car	(toks),	convert-

back	(cdr	(toks)))	endif

Theorem	(using	axioms):	toktrans-4-main-theorem

(token-listp	(toks)	^	integer-tokens-well-formed	(toks)	^	listp	(toks))	!	(convert-back	(integer-convert 	(toks))	=	toks)	The

following	events	are	also	necessary	for	the	proof:	The	de	nit ion	of	a	predicate	stat ing	that	a	posit ional	number	is	free	of	leading

zeros	no-leading-zeros.	A	predicate	to	determine	when	the	integer	tokens	of	a	token	list 	are	well	formed:	integer-tokens-well-

formed.	This	includes	the	appropriate	reversals	of	the	token	values.	A	lemma,	toktrans-4-help1,	stat ing	that	reversing	a	list 	that

has	the	property	of	having	just-digits-less-than-b	(b	is	the	base),	does	not	disturb	the	property.

76

CHAPTER	4.	SCANNING

A	lemma,	toktrans-4-help2,	stat ing	that	if	a	list 	is	a	proper	list 	and	the	reversal	of	the	list 	has	the	just-digits-less-than-b

property,	then	the	list 	itself	has	this	property.	Note	that	reversing	a	litatom	results	in	nil,	which	has	the	just-digits-less-than-b

property.	This	is	the	reason	for	including	the	proper	list 	hypothesis.	A	lemma,	toktrans-4-help3,	giving	a	rewrite	rule	for	a	case	in

which	the	integer	token	is	not	well	formed.	The	prover	could	not	see	this	on	its	own.

toktrans5	:	Remove	Cont inuat ions

As	noted	above,	the	programming	language	occam	2	has	a	rather	odd	rule	about	the	cont inuat ion	of	lines.	Since	there	is	no

statement-delimit ing	token,	it 	is	not	t rivial	to	nd	the	extent	of,	for	example,	an	expression	on	the	right-hand	side	of	an

assignment	statement.	Instead	of	using	the	o	side	rule	Lan66],	occam	2	speci	es	that	breaks	may	only	occur	after	speci	ed

tokens,	and	that	the	cont inuat ions	must	be	indented	at 	least 	as	much	as	the	current	line.	Such	cont inuat ions	are	not	necessary

when	there	are	explicit 	statement	delimeters.	They	do	cause	problems	in	the	transformat ion	from	absolute	to	relat ive

indentat ions,	as	these	indentat ions	do	not	denote	a	block	boundry,	but	only	scope	inclusion!	Since	only	the	one-dimensional

sequence	of	tokens	is	of	interest ,	and	problems	such	as	the	xed	line	size	for	editors	is	irrelevant,	a	token	transformat ion	funct ion

will	be	used	to	recognize	and	remove	cont inuat ions.	In	PLR	0	there	are	eight	tokens	that	are	members	of	the	\cont inuable	token"

list :	+	,	*	,	/	,	REM,	?	,	!	,	-	,	and	:=	.	Cont inuat ions	can	be	recognized	when	the	current	token	is	in	this	list .	If	the	next	token	is	an

indentat ion,	it 	is	removed.	The	level	is	not	checked:	if	the	level	is	incorrect ,	the	program	will	not 	parse	anyway.	Of	course,	the

problem	could	be	recognized	at 	this	early	stage,	but	the	simplest 	possible	method	was	chosen.	The	funct ion	is-kw-indentat ion	is

used	to	recognize	the	pre-indentat ions	that	have	the	keyword	INDENT	as	a	token	name.	is-indentat ion	recognizes	an

indentat ion	with	a	number	as	the	value.

Definit ion:	Definit ion:	Definit ion:

is-kw-indentat ion	(x)	=	(token-name	(x)	=	'indent)	is-indentat ion	(x)	=	(is-kw-indentat ion	(x)	^	(token-value	(x)	2	N))	discont inue

(toks	,	cont inue-list)	=	if	toks'	nil	then	toks	elseif	token-name	(car	(toks))	2	cont inue-list 	then	if	is-kw-indentat ion	(cadr	(toks))

then	cons	(car	(toks),	discont inue	(cddr	(toks),	cont inue-list))	else	cons	(car	(toks),	discont inue	(cdr	(toks),	cont inue-list))	endif

else	cons	(car	(toks),	discont inue	(cdr	(toks),	cont inue-list))	endif	A	token	list 	contains	no	cont inuat ions	when	the	token

following	a	member	of	the	cont inuat ion	list 	is	never	an	indentat ion	token.

Definit ion:

no-cont inuat ions-p	(toks	,	cont inue-list)	=	if	toks	'	nil	then	t 	elseif	token-name	(car	(toks))	2	cont inue-list 	then	if	is-kw-indentat ion

(cadr	(toks))	then	f

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

77

else	no-cont inuat ions-p	(cdr	(toks),	cont inue-list)	endif	else	no-cont inuat ions-p	(cdr	(toks),	cont inue-list)	endif

The	formulat ion	of	the	main	theorem	appeared	to	be	trivial:

Theorem:	main-theorem-toktrans-5

!	no-cont inuat ions-p	(discont inue	(toks	,	cont inue-list),	cont inue-list)

The	proof,	however,	would	not	go	through.	The	prover	balked	for	the	case	of	a	token	sequence	containing	empty	lines.	This

problem	had	been	encountered	before,	in	the	rst 	implementat ion	of	the	indentator	removal,	described	in	the	token

transformat ion	funct ions	toktrans6	and	toktrans7	.	If	a	token	sequence	has	empty	lines,	i.e.	there	is	more	than	one	indentat ion	in

sequence,	then	the	funct ion	discont inue	only	removes	the	rst 	one,	and	thus	the	property	no-cont inuat ions-p	does	not	hold.	So

the	empty	line	removal	was	pulled	up	to	this	token	transformat ion	funct ion,	in	order	to	have	access	to	the	funct ion	no-empty-

lines.	The	funct ion	that	removes	the	empty	lines	is	named	toktrans-5a	and	the	one	that	removes	indentat ions	toktrans-5b.	In	an

opt imizat ion	these	two	funct ions	could	easily	be	collapsed,	as	they	have	a	similar	case	structure.	See	WW91]	for	more

informat ion	on	how	pass	collapsing	can	be	done.

Definit ion:

remove-empty-lines	(l)	=	if	l	'nil	then	l	elseif	is-kw-indentat ion	(car	(l))	^	((cdr	(l)'	nil)	_	is-kw-indentat ion	(cadr	(l)))	then	remove-

empty-lines	(cdr	(l))	else	cons	(car	(l),	remove-empty-lines	(cdr	(l)))	endif

Definit ion:

no-empty-lines	(l)	=	if	l	'nil	then	t 	elseif	is-kw-indentat ion	(car	(l))	^	((cdr	(l)'	nil)	_	is-kw-indentat ion	(cadr	(l)))	then	f	else	no-

empty-lines	(cdr	(l))	endif

Theorem:	main-theorem-toktrans-5a

no-empty-lines	(remove-empty-lines	(l))

The	main	theorem	for	discont inue,	now	renamed	toktrans-5b,	includes	the	precondit ion	on	the	token	sequence	no-empty-lines.

Theorem:	main-theorem-toktrans-5b

no-empty-lines	(toks)	!	no-cont inuat ions-p	(discont inue	(toks	,	cont inue-list),	cont inue-list)

It 	seemed	to	hang	on	the	quest ion	of	what	exact ly	no-empty-lines	meant.	So	a	theorem	about	the	meaning	was	formulated	and

easily	proven.

Theorem:	no-empty-lines-meaning

(no-empty-lines	(toks)	^	is-kw-indentat ion	(car	(toks)))	!	(:	is-kw-indentat ion	(cadr	(toks)))

78

CHAPTER	4.	SCANNING

It 	st ill	would	not	prove.	The	trouble	was	that	the	prover	did	not	see	that	the	rst 	element	of	a	token	sequence	is	always

preserved	over	discont inue	{	if	anything	is	removed,	it 's	the	second	element	of	the	token	list .	I	formulated	and	proved

Theorem:	discont inue-car

listp	(toks)	!	(car	(toks))	=	(car	(discont inue	(toks	,	list))

This	turned	out	to	be	a	catastrophic	rewrite	rule,	all	further	at tempts	provoked	stack	over	ows,	as	all	(car	x)	could	be	rewrit ten

to	(car	(discont inue	x	list)),	a	looping	rewrite	rule.	But	turning	around	the	equality	is	exact ly	the	rewrite	rule	needed.

Theorem:	discont inue-car

listp	(toks)	!	(car	(discont inue	(toks	,	list))	=	car	(toks))

Now	the	main	theorem	can	be	proven.	A	funct ion	toktrans-5	is	de	ned	to	hide	the	use	of	two	passes	instead	of	one	from	the

user.

Definit ion:

toktrans-5	(toks	,	cont inue-list)	=	remove-empty-lines	(discont inue	(toks	,	cont inue-list))

toktrans6	:	Replace	Indentat ion	Value	With	Number	of	Blanks

This	token	transformat ion	funct ion	prepares	the	token	sequence	for	replacing	the	absolute	indentat ions	with	relat ive	ones.	There

are	two	tasks	involved,	which	as	in	the	previous	funct ion	are	proved	separately,	but	could	easily	be	collapsed	into	one	pass.	The

rst 	task	is	the	replacement	of	the	token	value	of	all	indentat ions	tokens,	which	are	character	strings	consist ing	of	a	carriage

return	and	an	even	number	of	blanks	(zero	blanks	are	possible),	with	the	number	of	blanks.	This	is	one	less	than	the	length	of	the

string.

Definit ion:

prepare-indentat ions	(toks)	=	if	toks	'	nil	then	toks	elseif	is-kw-indentat ion	(car	(toks))	then	cons	(mk-token	(token-name	(car

(toks)),	length	(token-value	(car	(toks)))	;	1),	prepare-indentat ions	(cdr	(toks)))	else	cons	(car	(toks),	prepare-indentat ions	(cdr
(toks)))	endif	The	speci	cat ion	from	above	is	encoded	in	the	funct ion	ok-indentat ion-value.	Two	token	sequences	l1	and	l2	are

checked	to	see	if	they	are	in	step	with	respect	to	the	value	transformat ion.	If	the	rst 	token	on	each	list 	is	an	indentat ion,	then

they	have	the	same	token	name,	and	the	value	of	l2	must	be	equal	to	one	less	than	the	length	of	the	value	in	l1.	If	the	tokens	are

not	indentat ions	then	they	must	be	left 	untouched	by	the	transformat ion.

Definit ion:

ok-indentat ion-value	(l1	,	l2)	=	if	l1	'	nil	then	l2	'	nil	else	if	is-kw-indentat ion	(car	(l1))	then	(token-name	(car	(l1))	=	token-name

(car	(l2)))	^	(token-value	(car	(l2))	=	(length	(token-value	(car	(l1)))	;	1))	else	car	(l1)	=	car	(l2)	endif	^	ok-indentat ion-value	(cdr
(l1),	cdr	(l2))	endif

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

Theorem:	toktrans-6a-main-theorem

79

(token-listp	(toks)	^	listp	(toks))	!	ok-indentat ion-value	(toks	,	prepare-indentat ions	(toks))

The	second	task	is	the	halving	of	the	indentat ion	token	values,	as	two	blanks	denote	one	level.	The	funct ion	half	halves	one

number,	and	the	funct ion	halve	halves	an	ent ire	list .

Definit ion:	half	(n)	=	(n	Definit ion:

2)

halve	(l)	=	if	l	'	nil	then	l	elseif	is-indentat ion	(car	(l))	then	cons	(mk-token	(token-name	(car	(l)),	half	(token-value	(car	(l)))),	halve

(cdr	(l)))	else	cons	(car	(l),	halve	(cdr	(l)))	endif	One	of	the	propert ies	that	must	be	proven	about	halving	is	that 	the	indentat ion

posit ions	are	preserved.	The	theorem	indent-posit ions-preserved-halve	is	not	di	cult 	to	prove.

Definit ion:

indent-posit ions-preserved	(l1	,	l2)	=	if	l1	'	nil	then	l1	=	l2	elseif	is-indentat ion	(car	(l1))	then	is-indentat ion	(car	(l2))	^	indent-

posit ions-preserved	(cdr	(l1),	cdr	(l2))	else	(car	(l1)	=	car	(l2))	^	indent-posit ions-preserved	(cdr	(l1),	cdr	(l2))	endif

Theorem:	indent-posit ions-preserved-halve

indent-posit ions-preserved	(l	,	halve	(l))

When	is	a	list 	of	tokens	\halved"	with	respect	to	another	list 	of	tokens?	The	funct ion	collects	only	the	indentat ions	from	a	token

list .	The	funct ion	that	takes	care	of	checking	that	the	indentat ions	do	not	change	place	and	that	all	other	tokens	remain

unchanged,	is	indent-posit ions-preserved.	In	order	to	prove	that	halve	applied	to	a	list 	results	in	a	list 	which	is	in	the	halved-listp

relat ion	to	the	original	list ,	a	small	lemma	about	the	behavior	of	collect-indents	on	a	parameter	that 	is	not	a	list 	is	needed.

collect-indents

Definit ion:

collect-indents	(l)	=	if	l	'	nil	then	nil	elseif	is-indentat ion	(car	(l))	then	cons	(x	(token-value	(car	(l))),	collect-indents	(cdr	(l)))	else

collect-indents	(cdr	(l))	endif

Theorem:	collect-indents-nlistp	Definit ion:

(l	'nil)	!	(collect-indents	(l)	=	nil)

halved-listp	(l1	,	l2)	=	if	l1'	nil	then	l2	'nil	else	(car	(l2)	=	half	(car	(l1)))	^	halved-listp	(cdr	(l1),	cdr	(l2))	endif

80

Theorem:	indents-halved

CHAPTER	4.	SCANNING

halved-listp	(collect-indents	(l),	collect-indents	(halve	(l)))

As	an	example	of	combining	passes,	the	funct ion	toktrans-6,	which	will	be	opened	up	in	the	proof,	is	de	ned	as	well	as	a

combined	ok-toktrans-6	predicate.	The	theorem	using	this	predicate	is	readily	proven.

Definit ion:	Definit ion:

toktrans-6	(toks)	=	halve	(prepare-indentat ions	(toks))	ok-toktrans-6	(l1	,	l2)	=	if	l1'	nil	then	l2	'	nil	else	if	is-kw-indentat ion	(car

(l1))	then	(token-name	(car	(l1))	=	token-name	(car	(l2)))	^	(token-value	(car	(l2))	=	half	(length	(token-value	(car	(l1)))	;	1))	else
car	(l1)	=	car	(l2)	endif	^	ok-toktrans-6	(cdr	(l1),	cdr	(l2))	endif

Theorem:	main-theorem-toktrans-6

ok-toktrans-6	(toks	,	toktrans-6	(toks))

toktrans7	:	Replace	Absolute	Indentat ions	with	Relat ive	Ones

The	previous	token	transformat ion	funct ions	have	been	rather	t rivial	to	implement	and	prove	correct .	The	implementat ion	and

proof	of	the	token	transformat ion	funct ion	that	is	also	called	the	indentator	is	much	more	complex.	It 	was	only	possible	to	prove

any	part 	of	it 	correct 	after	the	halving	had	been	removed	to	a	previous	pass.	As	soon	as	any	sort 	of	arithmet ic	appeared	in	a

theorem,	many	most ly	irrelevant	rewrite	rules	could	be	applied.	The	pool	of	subgoals	to	be	proven	soon	lled	with	lemmata	that

did	not	help,	and	the	proof	wandered	down	a	path	that	did	not	lead	to	the	goal.	Separat ing	out	the	numerical	port ions	helped

focus	the	proof	on	the	important	steps.	First 	the	task	of	this	token	transformat ion	funct ion	is	discussed.	De	nit ions	of	absolute

and	relat ive	indentat ions	are	needed	for	this,	as	well	as	a	funct ion	relat ing	the	two.

De	nit ion	4	A	token	sequence	is	said	to	contain	absolute	indentat ions	when	the	block	and

statement	structure	is	de	ned	using	the	o	side	rule	and	represented	by	indentat ion	tokens	that	denote	the	level	on	which	the

current	statement	began.

De	nit ion	5	A	token	sequence	is	said	to	contain	relat ive	indentat ions	when	there	are	three	tokens	represent ing	block	begin,	block

end,	and	statement	delimitat ion,	that 	are	used	for	expressing	the	block	and	statement	structure.

The	tokens	that	we	use	for	the	relat ive	indentat ions	are	NI	(next	indentat ion),	SI	(same	indentat ion	or	statement	delimitat ion),

and	BI	(back	indentat ion).	They	are	necessary	for	PLR	0	so	that	a	nite	context-free	grammar	can	be	used	for	parsing	the

language8.	The	task	of	the	indentator	is	to	t ransform	a	token	sequence	containing	absolute	indentat ions	into	one	that	uses	NI,

SI,	and	BI	to	denote	the	same	block	and	statement	structure	using	relat ive	indentat ions.	A	major	problem	was	the	speci	cat ion.

What	relat ionship	do	token	sequences	have	with	one	another	that	only	di	er	in	using	absolute	or	relat ive	indentat ions?	I

deliberated	with

See	WW92]	for	a	detailed	discussion	of	the	o	side	rule	and	the	problems	in	resolving	this	non-context-free	property.

8

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

81

William	R.	Bevier	at 	CLInc	on	this	quest ion	while	we	at tempted	a	proof	of	the	indentator	funct ion	that	has	served	as	a	basis	for

this	proof	WW90].	We	nally	came	up	with	a	funct ion	to	describe	the	relat ionship	that	we	called	di	-cycle,	as	there	is	a	cyclic	di

erence	relat ionship.	The	funct ion	is	applied	to	a	start ing	level	old	and	a	list 	of	integers	represent ing	the	absolute	indentat ion

levels	of	each	statement	in	sequence.	The	result 	is	a	list 	of	numbers	one	longer	than	the	list ,	for	the	absolute	indentat ions	with

each	number	represent ing	the	relat ive	di	erence	to	the	previous	level.	di	-cycle	(old,	(a	b	c	d	:	:	:	y	z))	=	(a	;	old	b	;	a	c	;	b	:	:	:	z	;	y
old	;	z)	di	-cycle	(0	(1	1	2	3	4	3	4))	=	(1	0	1	1	1	;	1	1	;	4)	This	can	be	used	as	a	speci	cat ion	for	indentator.	diff-cycle1	creates	the
relat ive	indentat ion	number	list 	by	remembering	the	original	level	and	the	previous	one.	diff-cycle	is	the	outer	funct ion	that	is

called	with	the	start ing	level.	The	funct ion	pdiff	is	a	proper	di	erence	funct ion	{	NQTHM's	difference	does	not	handle	negat ive

numbers	{	that 	uses	fix	for	coercing	non-numerical	parameters	to	0,	calculates	the	di	erences,	and	constructs	negat ive	numbers

as	appropriate.	At 	this	point 	two	lemmata	can	be	proven	about	the	result 	of	applying	diff-cycle1	to	a	listp	or	nlistp	rst 	parameter.

Definit ion:

pdi	(i	,	j)	=	if	x	(i)	<	x	(j)	then	;	(j	;	i)	elseif	x	(i)	=	x	(j)	then	0	else	i	;	j	endif
Definit ion:

di	-cycle1	(l	,	orig	,	prev)	=	if	l	'	nil	then	list 	(pdi	(orig	,	prev))	else	cons	(pdi	(car	(l),	prev),	di	-cycle1	(cdr	(l),	orig	,	car	(l)))	endif

Theorem:	di	-cycle1-nlistp	Theorem:	di	-cycle1-listp

(l	'	nil)	!	(di	-cycle1	(l	,	orig	,	prev)	=	list 	(pdi	(orig	,	prev)))	listp	(l)	!	(di	-cycle1	(l	,	orig	,	prev)	=	cons	(pdi	(car	(l),	prev),	di	-cycle1

(cdr	(l),	orig	,	car	(l))))

Definit ion:	di	-cycle	(l	,	old)	=	di	-cycle1	(l	,	old	,	old)

The	work	of	the	indentator	is	also	split 	into	two	parts.	First 	the	di	erences	are	calculated	and	each	indentat ion	token	replaced	by

an	absolute	indentat ion	token	that	gives	the	magnitude	and	direct ion	of	the	indentat ion.	A	two-level	step	in	is	noted	as	('relat ive

.	2),	a	three-level	step	out	as	('relat ive	.	-3).	The	token	name	'relat ive	must	be	a	fresh,	i.e.	unused,	token	name.	The	funct ion

called	emit1	cdrs	down	the	token	list ,	\looking	back",	or	remembering	the	level	of	the	previous	statement,	and	comparing	it 	to

the	current	level.	The	funct ion	emit-relat ive	decides	whether	a	posit ive,	zero,	or	negat ive	number	is	necessary.	If	the	current

level	is	larger	than	the	previous	one,	this	is	a	step	out	or	a	block	beginning	and	it 	has	a	posit ive	value.	If	the	current	level	is	the

same,	this	is	the	same	indentat ion	level,	and	so	the	value	is	zero.	If	the	current	level	is	smaller	than	the	previous	level,	this	is	a

step	back	or	a	block	end,	and	thus	it 	has	a	negat ive	value9.	The	funct ion	emit1	st ill	has	to	decide	what	to

The	funct ion	negat ive-guts	is	the	accessor	funct ion	for	the	shell	minus	that	is	part 	of	the	prover's	basic	set 	of	shells	and

theorems.

9

82

CHAPTER	4.	SCANNING

do	if	it 	is	presented	with	an	improper	indentat ion,	that 	is,	one	for	which	the	token	value	has	not	been	converted	to	a	proper

number.

Definit ion:

is-relat ive	(tok)	=	(tokenp	(tok)	^	(token-name	(tok)	=	'relat ive)	^	((token-value	(tok)	2	N)	_	(negat ivep	(token-value	(tok))	^

(negat ive-guts	(token-value	(tok))	6=	0))))	emit-relat ive	(i	,	j)	=	if	x	(i)	<	x	(j)	then	mk-token	('relat ive,	;	(j	;	i))	elseif	x	(i)	=	x	(j)
then	mk-token	('relat ive,	0)	else	mk-token	('relat ive,	i	;	j)	endif
Definit ion:	Definit ion:

emit1	(l	,	orig	,	prev)	=	if	l'	nil	then	list 	(emit-relat ive	(orig	,	prev))	elseif	is-kw-indentat ion	(car	(l))	then	if	is-indentat ion	(car	(l))

then	cons	(emit-relat ive	(token-value	(car	(l)),	prev),	emit1	(cdr	(l),	orig	,	token-value	(car	(l))))	else	emit1	(cdr	(l),	orig	,	prev)

endif	else	cons	(car	(l),	emit1	(cdr	(l),	orig	,	prev))	endif

Definit ion:	emit 	(l	,	old)	=	emit1	(l	,	old	,	old)

The	proof	that 	this	funct ion	results	in	'relat ive	tokens	that	are	in	di	-cycle	to	the	indentat ions	is	relat ively	straight	forward.	It 	must

be	stated	that	the	original	sequence	contained	no	'relat ive	tokens,	that 	the	start ing	level	is	a	natural	number,	and	that	the

sequence	is	a	list 	of	tokens.	The	\meaning"	funct ion	relat ive-meaning	lters	out	the	values	of	the	'relat ive	tokens,	result ing	in	the

same	list 	as	the	diff-cycle.	Only	one	lemma	is	needed	to	show	how	diff-cycle1	behaves	when	the	start ing	level	is	not	a	number.

The	lemma	emit1-theorem	will	open	up	40	sub-cases,	but	all	are	t rivial	and	readily	proven	by	the	prover.

Definit ion:

relat ive-meaning	(l)	=	if	l'	nil	then	nil	elseif	is-relat ive	(car	(l))	then	cons	(token-value	(car	(l)),	relat ive-meaning	(cdr	(l)))	else

relat ive-meaning	(cdr	(l))	endif

Definit ion:

relat ive-free	(l)	=	if	l	'	nil	then	t 	elseif	tokenp	(car	(l))	then	(token-name	(car	(l))	6=	'relat ive)	^	relat ive-free	(cdr	(l))

else	f	endif

Theorem:	di	-cycle1-not-numberp

(v	62	N)	!	(di	-cycle1	(z	,	orig	,	v)	=	di	-cycle1	(z	,	orig	,	0))

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

Theorem:	emit1-theorem

83

(relat ive-free	(l)	^	(old	2	N)	^	token-listp	(l))	!	(relat ive-meaning	(emit1	(l	,	orig	,	prev))	=	di	-cycle1	(collect-indents	(l),	orig	,	prev

))	(relat ive-free	(l)	^	(old	2	N)	^	token-listp	(l))	!	(relat ive-meaning	(emit 	(l	,	old))	=	di	-cycle	(collect-indents	(l),	old))

Theorem:	emit-theorem

The	second	pass	replaces	the	'relat ive	tokens	with	the	appropriate	number	of	single	relat ive	indentat ion	tokens.	If	the	value	is

posit ive,	that 	number	of	NI	tokens	replace	the	'relat ive	token,	a	SI	replaces	a	value	of	0,	and	the	absolute	value	of	a	negat ive

'relat ive	token	is	the	number	of	BI	tokens	that	replace	it .	The	funct ion	make-list 	constructs	a	list 	with	n	copies	of	the	parameter

value	v	and	is	used	for	this.

Definit ion:

make-list 	(v	,	n)	=	if	(n'	0)	_	(n	62	N)	then	nil	else	cons	(v	,	make-list 	(v	,	n	;	1))	endif
Theorem:	length-make-list

length	(make-list 	(v	,	n))	=	x	(n)	(n	62	N)	!	(make-list 	(x	,	n)	=	nil)	(0	<	x	(n))	!	listp	(make-list 	(x	,	n))	(n	=	0)	!	(make-list 	(x	,	n)	=

nil)	plist 	(make-list 	(v	,	n))	=	make-list 	(v	,	n)	many	of	what	sort 	of	token	to	issue,

Theorem:	not-numberp-make-list 	Theorem:	listp-make-list 	Theorem:	make-list-zero

Theorem:	plist-make-list

The	funct ion	ni-si-bis	is	the	one	that	decides	how	relat ive-to-ni-si-bi	replaces	the	ent ire	sequence.

Definit ion:

ni-si-bis	(n)	=	if	n	=	0	then	make-list 	(mk-token	('si,	nil),	1)	elseif	0	<	n	then	make-list 	(mk-token	('ni,	nil),	n)	else	make-list 	(mk-

token	('bi,	nil),	negat ive-guts	(n))	endif

Definit ion:

relat ive-to-ni-si-bi	(toks)	=	if	toks'	nil	then	toks	elseif	is-relat ive	(car	(toks))	then	append	(ni-si-bis	(token-value	(car	(toks))),

relat ive-to-ni-si-bi	(cdr	(toks)))	else	cons	(car	(toks),	relat ive-to-ni-si-bi	(cdr	(toks)))	endif

84

CHAPTER	4.	SCANNING

The	important	quest ion	now	is	how	to	specify	that 	the	conversion	to	the	relat ive	tokens	was	correct .	The	conversion	appears	to

be	a	t rivial	one,	and	it 	might	be	hard	to	envision	how	to	state	and	prove	a	believable	correctness	predicate.	The	funct ion

relat ive-conversion-ok	compares	two	token	sequences,	pre,	containing	('relat ive	.	n)	tokens	represent ing	the	indentat ions,	and

post,	with	the	corresponding	NI/SI/BI	tokens.	If	a	token	in	pre	is	not	a	relat ive	token,	then	the	exact	same	token	is	found	in	post.

If	it 	is	a	relat ive	token,	then	there	is	an	appropriate	pre	x	on	post	{	a	SI	token	if	the	relat ive	indentat ion	is	zero,	and	the

corresponding	number	of	NI	or	BI	tokens	depending	on	the	direct ion	of	the	indentat ion.	An	important	detail	is	that 	when	the

token	sequence	pre	has	been	exhausted,	there	must	only	be	BI	tokens	left 	on	post,	corresponding	to	the	nal	closing	indentat ions

that	must	be	issued.	The	funct ion	relat ive-conversion-ok	recurs	on	the	CDR	of	pre	and	on	post	without	the	current	NI/SI/BI	pre

x.	The	funct ion	how-much	is	the	key	to	determining	how	many	tokens	are	to	be	removed.	Definit ion:	matches	(n	,	toks)	=	if	toks	'

nil	then	f	elseif	n	=	0	then	car	(toks)	=	mk-token	('si,	nil)	elseif	0	<	n	then	rstn	(n	,	toks)	=	make-list 	(mk-token	('ni,	nil),	n)	else

rstn	(negat ive-guts	(n),	toks)	=	make-list 	(mk-token	('bi,	nil),	negat ive-guts	(n))	endif	how-much	(n)	=	if	n	=	0	then	1	elseif	0	<	n

then	x	(n)	else	negat ive-guts	(n)	endif

Definit ion:	Definit ion:

relat ive-conversion-ok	(pre	,	post)	=	if	pre	'	nil	then	if	post '	nil	then	t 	else	(token-name	(car	(post))	=	'bi)	^	relat ive-conversion-ok

(pre,	cdr	(post))	endif	elseif	is-relat ive	(car	(pre))	then	matches	(token-value	(car	(pre)),	post)	^	relat ive-conversion-ok	(cdr	(pre

),	restn	(how-much	(token-value	(car	(pre))),	post))	else	(car	(pre)	=	car	(post))	^	relat ive-conversion-ok	(cdr	(pre),	cdr	(post))

endif	The	proof	is	now	quite	straight-forward	with	the	except ion	of	one	important	detail	{	the	prover	notes	that	it 	is	not	a

theorem	if	the	pre	replacement	token	sequence	contains	a	token	with	the	name	'relat ive,	but	with	a	token	value	that	is	neither	a

natural	number	or	a	negat ive	number.	At 	this	point 	the	recognizer	funct ion	is-relat ive	was	made	more	restrict ive,	as	the

proposed	lemma	is	not	correct 	if	the	negat ive	zero,	(minus	0)	is	the	token	value!	This	problem,	having	two	representat ions	for

zero,	had	occurred	many	t imes	in	the	past,	but 	always	in	conjunct ion	with	other	number	theoret ic	problems.	Now,	this	was	the

only	problem	and	was	repaired	by	expanding	the	recognizer	funct ion	for	relat ives,	to	not	accept	a	token	value	of	(minus	0).	Then

all	that 	was	needed	was	the	predicate	all-relat ive-tokens-good	for	the

4.3.	TRANSFORMING	PRE-TOKENS	INTO	TOKENS

85

hypothesis	of	the	correctness	theorem,	which	states	that	if	a	token	has	the	name	'relat ive,	then	it 	is	a	well-formed	token	with

respect	to	its	value.	Now	the	theorem	is	easily	proven.

Definit ion:

all-relat ive-tokens-good	(toks)	=	if	toks'	nil	then	t 	elseif	token-name	(car	(toks))	=	'relat ive	then	is-relat ive	(car	(toks))	^	all-

relat ive-tokens-good	(cdr	(toks))	else	all-relat ive-tokens-good	(cdr	(toks))	endif

Theorem:	relat ive-theorem

(token-listp	(toks)	^	all-relat ive-tokens-good	(toks))	!	relat ive-conversion-ok	(toks	,	relat ive-to-ni-si-bi	(toks))

Two	lit t le	lemmata	are	also	easily	proven	showing	that	the	result 	of	applying	emit1	to	a	token	sequence	that	is	free	of	any

tokens	having	the	token	name	'relat ive	will	result 	in	a	token	sequence	containing	only	proper	relat ive	token.	These	lemmata

prove	that	the	two	passes	can	be	used	together.	They	act 	as	a	sort 	of	glue.	Finally,	the	indentator	is	de	ned	to	be	both	passes

started	from	the	level	zero.

Theorem:	glue1	Theorem:	glue2

(token-listp	(toks)	^	relat ive-free	(toks))	!	all-relat ive-tokens-good	(emit1	(toks	,	n	,	m))	token-listp	(toks)	!	token-listp	(emit1

(toks	,	n	,	m))

Definit ion:	indentator	(l)	=	relat ive-to-ni-si-bi	(emit1	(l	,	0,	0))

There	are	of	course	further	theorems	that	can	be	proven	about	the	indentator	to	increase	con	dence	in	the	implementat ion.	An

obvious	one	is	a	theorem	about	the	result 	of	applying	indentator	to	a	token	list .	There	should	be	no	absolute	indentat ion	tokens

in	the	result .	All	have	been	transformed	to	something	by	the	funct ion.	This	speci	cat ion	is	stated	by	the	funct ion	indent-free,

which	is	a	predicate	returning	T	if	no	indentat ions	were	found.

Definit ion:

indent-free	(l)	=	if	l	'	nil	then	:	is-kw-indentat ion	(l)	elseif	is-kw-indentat ion	(car	(l))	then	f	else	indent-free	(cdr	(l))	endif	Some

typical	theorems	about	interact ions	of	indent-free	with	other	funct ions,	and	a	statement	about	a	degenerate	case	must	be

proven	before	the	indentat ion-freeness	of	the	result 	of	the	indentator	can	be	shown.

Theorem:	indent-free-cons

(indent-free	(a)	^	(:	is-kw-indentat ion	(b)))	!	indent-free	(cons	(b	,	a))	(indent-free	(a)	^	indent-free	(b))	!	indent-free	(append	(a	,

b))	indent-free	(a)	!	indent-free	(make-list 	(a	,	n))

Theorem:	indent-free-append

Theorem:	indent-free-make-list

86

Theorem:	indent-free-relat ive-to-ni-si-bi

CHAPTER	4.	SCANNING

(token-listp	(x)	^	indent-free	(x))	!	indent-free	(relat ive-to-ni-si-bi	(x))	Theorem:	indent-free-emit1	(n	2	N)	!	indent-free	(emit1	(z

,	0,	n))	Theorem:	indent-free-indentator	token-listp	(l)	!	indent-free	(indentator	(l))

4.4	Finding	an	Adequate	Representat ion	for	Tokens

An	adequate	representat ion	for	a	sequence	of	tokens	is	a	sequence	of	characters	which,	when	rescanned,	results	in	the	same

sequence	of	tokens.	This	is	a	way	of	increasing	con	dence	in	the	token	transformat ion	funct ion	chosen.	Some	of	the	retrieve

funct ions	from	the	token	transformat ion	funct ions	will	be	useful	in	this	e	ort ,	but 	the	funct ions	that	use	stepping	funct ions	will

need	new	retrieval	funct ions.	The	retrieval	funct ions	will	be	applied	in	the	opposite	order	of	the	token	transformat ion	phase.

Replace	Relat ive	Indentat ions	with	Absolute	Ones

The	proof	of	the	token	transformat ion	funct ion	unfortunately	did	not	use	a	retrieval	funct ion,	but	showed	that	the	relat ive

indentat ions	were	in	step	with	the	absolute	ones.	Since	extraneous	indentat ions	will	be	stripped	away,	an	absolute	indentat ion

can	be	issued	for	every	relat ive	one	encountered!	The	level	will	be	determined	as	in	the	stepper:	remembering	the	previous	level

and	changing	it 	as	dictated	by	the	current	relat ive	indentat ion.	retrieve-indents1	is	the	recursive	call	and	retrieve-indents	the

funct ion	to	be	called	from	the	\outside".	Definit ion:	is-ni-si-bi	(tok)	=	((token-name	(tok)	=	'ni)	_	(token-name	(tok)	=	'bi)	_

(token-name	(tok)	=	'si))	Definit ion:	retrieve-indents1	(level	,	toks)	=	if	toks'	nil	then	nil	elseif	is-ni-si-bi	(car	(toks))	then	let 	next

be	if	token-name	(car	(toks))	=	'ni	then	1	+	level	elseif	token-name	(car	(toks))	=	'bi	then	level	;	1	else	level	endif	cons	(mk-token
('indent,	next),retrieve-indents1	(next	,	cdr	(toks)))	endlet 	else	cons	(car	(toks),	retrieve-indents1	(level	,	cdr	(toks)))	endif

Definit ion:	retrieve-indents	(toks)	=	retrieve-indents1	(0,	toks)

in

Replace	Number	of	Blanks	with	Blanks

The	token	sequence	now	contains	indentat ion	tokens	that	have	the	indentat ion	level	in	the	value	posit ion.	This	number	must	be

doubled	(one	indentat ion	level	is	denoted	by	two	blanks)	and	then	a	list 	of	characters	containing	a	newline	character	and	the

corresponding	number	of	blanks	is	made.	Constant	funct ions	are	de	ned	for	these	characters,	making	the	retrieval	funct ion

simple.

4.4.	FINDING	AN	ADEQUATE	REPRESENTATION	FOR	TOKENS

Definit ion:	bl	=	32	Definit ion:	nl	=	10	Definit ion:

87

retrieve-blanks	(toks)	=	if	toks	'	nil	then	nil	elseif	is-indentat ion	(car	(toks))	then	cons	(mk-token	(token-name	(car	(toks)),	cons

(nl,	my-make-list 	(bl,	2	token-value	(car	(toks))))),	retrieve-blanks	(cdr	(toks)))	else	cons	(car	(toks),	retrieve-blanks	(cdr	(toks

)))	endif	There	is	nothing	to	retrieve	for	toktrans5	as	this	t ransformat ion	only	discards	unneeded	cont inuat ions	and	empty	lines.

Convert 	Integers	to	Strings

The	value	component	of	integer	tokens	must	then	be	converted	back	to	the	string	representat ion	of	the	integer.	Luckily	a

retrieval	funct ion,	convert-back,	is	already	de	ned.

Collapsing	Keywords	and	Ident i	ers

Since	a	stepper	was	used	in	the	proof	of	toktrans3	a	de	nit ion	for	a	new	funct ion	is	needed.	This	value	is	returned	for	all	tokens

that	are	either	the	default 	token	(for	PLR	0	IDENT)	or	the	members	of	the	domain	of	the	keyword	list .	All	other	tokens	are	left

untouched.	Definit ion:	squash	(toks	,	name	,	key-words-list 	,	default)	=	if	toks	'	nil	then	toks	else	let 	dom	be	domain	(key-words-

list)

in	if	(token-name	(car	(toks))	=	default)	_	(token-value	(car	(toks))	2	dom)	then	cons	(mk-token	(name,	token-value	(car	(toks

))),	else	cons	(car	(toks),

squash	(cdr	(toks),	name	,	key-words-list 	,	default))

squash	(cdr	(toks),	name	,	key-words-list 	,	default))	endif	endlet 	endif

Compact ing	the	Operators

The	original	representat ion	of	the	operators	was	also	kept	in	the	token	value,	so	again	only	the	replacement	list 	domain	need	be

consulted	to	see	which	tokens	represented	members	of	the	character	class	Lop	.	Definit ion:	compact	(toks	,	name	,	replace-list

)	=	if	toks	'	nil	then	toks	else	let 	dom	be	domain	(replace-list)

in	if	car	(token-value	(car	(toks)))	2	dom	then	cons	(mk-token	(name,	token-value	(car	(toks))),	else	cons	(car	(toks),

compact	(cdr	(toks),	name	,	replace-list))

compact	(cdr	(toks),	name	,	replace-list))	endif	endlet 	endif

88

CHAPTER	4.	SCANNING

Insert ing	White	Space

A	mimimal	amount	of	white	space	is	needed	in	order	to	dist inguish	the	tokens	when	scanning	again.	A	blank	must	be	put

between	every	token,	except	after	an	indentat ion	token.	Since	this	is	the	last 	retrieval	funct ion,	the	token	names	are	no	longer

needed	and	a	character	sequence	can	be	constructed.

Definit ion:

spacing	(toks)	=	if	toks	'	nil	then	toks	elseif	is-indentat ion	(car	(toks))	then	append	(token-value	(car	(toks)),	spacing	(cdr	(toks

)))	else	append	(token-value	(car	(toks)),	append	(list 	(bl),	spacing	(cdr	(toks))))	endif	The	explicit 	call	for	retrieving	PLR	0

character	sequences	is	given	in	Appendix	A.4

A	Proof	of	Adequacy?

In	order	to	prove	the	representat ion	to	be	adequate,	the	following	conjecture	should	be	proven:

Conjecture:	scan-retrieve-is-ident ity

token-listp	(toks)	!	(scan	(nfsa	,	cc	,	retrieve	(toks	,	discard-name	,	replace-words	,	determine-default 	,	key-words	,	determine-

name)	,	discard-list 	,	replace-words	,	key-words	,	cont inue-list 	,	discard-name	,	determine-name	,	determine-default)	=	toks)

This	is,	however,	not	t rivial	to	prove,	as	the	indentat ion	conversion	and	retrieval	processes	do	not	t 	together	nicely.	One	can,

however,	for	a	concrete	character	sequence,	produce	the	token	sequence,	retrieve	a	normalized	character	sequence	and	re-

scan	that.	The	two	token	sequences	must	be	ident ical.	This	was	at tempted	in	two	small	experiments	with	PLR	0	programs,	a

64-character	sequence	and	a	75-character	sequence	both	retrieved	to	a	normal	form.	However,	each	scanning	takes

approximately	1.5	hours	computat ion	t ime	due	to	the	exponent ial	nature	of	the	scanning	implementat ion.	If	it 	is	deemed

absolutely	necessary	to	have	completely	proven	correct 	scanners	for	languages	with	such	structures	as	indentat ions,	then	more

work	will	have	to	be	invested	at 	this	point .

Chapter	5

The	Parsing	Skeleton

This	chapter	is	concerned	with	specifying	the	propert ies	of	a	shift -reduce,	table-driven	parser	skeleton,	implement ing	it 	and

proving	it 	to	be	correct .	Such	a	parser	can	be	used	with	a	table	generated	by	a	parser	table	generator	for	construct ing	a	parse

tree	for	an	input	sequence	of	tokens.	Although	the	correctness	proof	was	not	completely	conducted,	the	mechanical	correctness

proof	for	major	invariants	are	demonstrated.	A	shift -reduce	parser	is	a	special	kind	of	nite	pushdown	transducer.	Such	a

mechanism	has	a	nite	control	table.	It 	has	access	to	the	next	symbol	in	the	input	stream,	and	it 	makes	use	of	a	pushdown	stack.

Di	erent	sorts	of	informat ion	are	usually	kept	on	the	pushdown	stack:	the	current	parsing	symbols,	the	current	states,	and	the

trees	constructed.	These	can	be	separated	into	a	con	gurat ion	with	three	explicit 	stacks,	a	symbol	stack,	a	state	stack	and	a

tree	stack,	so	that	statements	can	be	made	about	invariants	that	must	hold	on	the	components	during	parsing.	The	reduct ions,

which	are	normally	emit ted	by	the	transducer,	can	also	be	collected	into	a	con	gurat ion	component	called	the	reduct ion	sequence

or	parse	string.	In	addit ion,	a	representat ion	for	the	derivat ion	will	be	constructed	as	a	further	con	gurat ion	component.	The	nite

control	table	must	indicate	at 	each	step	of	the	machine	one	of	three	act ions,	depending	on	the	current	state	and	the	current

lookahead	symbol.	The	parser	must	either

shift 	the	current	lookahead	onto	the	symbol	stack	and	determine	the	next	state,	reduce,	using	a	product ion	from	the	grammar,

or

declare	an	error.	There	is	a	special	reduct ion	act ion	that	is	somet imes	called	the	accept	act ion.	This	is	a	reduct ion	by	the

axiomat ic	product ion,	at 	which	t ime	there	should	be	only	one	element	on	the	tree	stack.	This	is	the	concrete	syntax	t ree

corresponding	to	a	right 	parse	of	the	string.	It 	is	interest ing	to	note	that,	no	matter	how	the	parsing	table	determines	which	of

the	act ions	is	to	take	place	at 	every	step,	if	the	machine	terminates	with	the	accept	condit ion	holding,	then	the	parsing	has	been

conducted	correct ly	for	that 	input	sequence!	This	is	because	a	number	of	invariants	hold	for	parsing,	determining	that	the	parse

tree	always	contains	a	right 	derivat ion	for	the	input	sequence	and	the	symbols	seen	are	in	the	front ier	of	the	t ree.	This	proof	will

be	discussed	in	detail	in	sect ion	5.3.2	.	The	speci	cat ions,	implementat ions,	and	proofs	of	correctness	presented	in	this	chapter

are	grouped	into	data	representat ions	and	funct ions.	A	representat ion	for	stacks	is	needed	for	the	three	stacks	used	in	the	con

gurat ion,	as	well	as	representat ions	for	grammars,	t rees,	con	gurat ions,	and	derivat ions.	The	funct ions	for	accessing	the	parsing

tables	and	the	parsing	skeleton	funct ion	itself	are	then	presented.	89

90

CHAPTER	5.	THE	PARSING	SKELETON

5.1	Data	Types

Some	of	the	data	types,	such	as	the	stack,	will	be	familiar	to	the	reader.	Others,	such	as	the	con	gurat ion,	are	speci	cally

constructed	for	the	parsing	skeleton.	The	typical	stack	implementat ion	with	top,	push,	and	pop	will	be	extended	by	funct ions

such	as	pop-n,	which	removes	a	number	of	elements	from	a	stack,	and	top-n	which	creates	a	list 	of	the	top	n	elements	of	a

stack,	with	the	top	of	the	stack	being	the	last 	element	of	the	list .	A	funct ion	from-bottom	\reads"	the	stack	from	the	bottom,

creat ing	a	list 	of	the	elements	in	reverse	stack	order.	This	way	of	reading	the	stack	is	necessary	for	stat ing	and	proving

invariants	of	parsing.	The	funct ion	signatures	are:	is-stack	:	Any	;!	B	emptystack	:	;!	Stack	push	:	Element	Stack	;!	Stack	pop	:
Stack	;!	Stack	top	:	Stack	;!	Element	is-empty	:	Stack	;!	B	pop-n	:	N0	Stack	;!	Stack	top-n	:	N0	Stack	;!	Element	stack-length	:
Stack	;!	N	from-bottom	:	Stack	;!	Element	A	shell	can	be	used	for	implement ing	this	basic	type.
Event:	Add	the	shell	push	,	with	bottom	object 	funct ion	symbol	emptystack	,	with	recognizer

5.1.1	Stacks

funct ion	symbol	is-stack	,	and	2	accessors:	top	,	with	type	restrict ion	(none-of)	and	default 	value	zero	pop	,	with	type	restrict ion

(one-of	is-stack)	and	default 	value	emptystack.

One	problem	with	the	shell	implementat ion	is	that 	there	is	no	way	to	instant iate	a	stack	to	a	speci	c	element	type:	the	type

restrict ion	facility	for	shell	construct ion	is	not	powerful	enough	for	this.	There	are	two	\types",	states	and	symbols,	which	could

both	be	represented	by	literal	atoms.	The	nest	type	restrict ion	that	could	be	used	would	be	litatom,	however,	so	they	cannot	be

di	erent iated.	This	is	unfortunate,	as	it 	will	propagate	throughout	the	proofs:	it 	will	be	necessary	to	include	type	checking	terms

into	many	hypotheses.	The	funct ion	is-empty	returns	T	only	if	its	parameter	is	a	stack	equal	to	emptystack.	The	de	nit ion	is

trivial	and	straight-forward.	Definit ion:	is-empty	(s)	=	if	is-stack	(s)	then	s	=	emptystack	else	f	endif	The	funct ion	pop-n	removes

n	elements	from	a	stack	by	repeated	applicat ions	of	pop.	Definit ion:	pop-n	(n	,	s)	=	if	:	is-stack	(s)	then	s	elseif	n	'	0	then	s	else

pop-n	(n	;1,	pop	(s))	endif	The	funct ion	top-n	returns	the	top	n	elements	of	a	stack	as	a	list 	with	the	top	of	the	stack	as	the	last
list 	element.	The	de	nit ion	uses	the	list 	shell	constructor	for	making	a	singleton	list

5.1.	DATA	TYPES

91

and	the	satellite	funct ion1	append	to	concatenate	the	singleton	list 	containing	the	top	of	the	stack	to	the	list 	obtained	by

recurring	on	a	diminished	value	of	n.	Definit ion:	top-n	(n	,	s)	=	if	(:	is-stack	(s))	_	(s	=	emptystack)	then	nil	elseif	n	'	0	then	nil	else

append	(top-n	(n	1,	pop	(s)),	list 	(top	(s)))	endif	It 	is	easy	to	show	that	the	result 	of	popping	an	empty	stack	any	number	of

t imes	results	in	the	empty	stack.	That	is,	there	is	not	an	except ion	condit ion	such	as	\stack	under	ow",	but	a	total	de	nit ion	such

as	the	one	found	in	the	Boyer-Moore	logic	for	natural	numbers.	Theorem:	pop-n-emptystack	(size	2	N)	!	(pop-n	(size	,

emptystack)	=	emptystack)	The	funct ion	stack-length	returns	the	number	of	elements	in	a	stack.	Along	with	the	trivial

implementat ion	it 	can	easily	be	proven	that	the	length	of	a	non-empty	stack	is	non-zero.	Definit ion:	stack-length	(s)	=	if	(:	is-

stack	(s))	_	is-empty	(s)	then	0	else	1	+	stack-length	(pop	(s))	endif	Theorem:	not-empty-not-zero	(is-stack	(stack)	^	(:	is-

empty	(stack)))	!	(0	<	stack-length	(stack))	The	funct ion	from-bottom	reads	the	stack	from	the	bottom,	returning	the	list 	of

elements	of	the	stack	in	reverse	stack	order,	i.e.	the	top	element	is	last 	and	the	bottom	element	is	rst 	in	the	list .	It 	was

necessary	to	have	the	funct ion	explicit ly	terminate	on	a	non-stack,	otherwise	the	parameter	would	be	coerced	to	0	and	the

funct ion	would	actually	be	non-terminat ing.	Definit ion:	from-bottom	(s)	=	if	is-empty	(s)	_	(:	is-stack	(s))	then	nil	else	append

(from-bottom	(pop	(s)),	list 	(top	(s)))	endif	Since	from-bottom	is	heavily	used	in	the	main	proof,	a	number	of	theorems	about	its

propert ies	are	needed.	One	is	the	relat ionship	with	pop-n,	one	is	about	the	relat ionship	with	push,	and	one	states	that	the	result

of	from-bottom	is	a	proper	list .	Theorem:	append-from-bottom-pop-n	is-stack	(s)	!	(append	(from-bottom	(pop-n	(n	,	s)),	top-n

(n	,	s))	=	from-bottom	(s))	Theorem:	from-bottom-push	is-stack	(b)	!	(from-bottom	(push	(a	,	b))	=	append	(from-bottom	(b),

list 	(a)))	Theorem:	plistp-from-bottom	is-stack	(s)	!	plistp	(from-bottom	(s))	There	is	also	a	minor	lemma	about	stacks	that	is

necessary	as	part 	of	determining	measures	for	other	funct ions	that	use	the	push	shell.	The	lemma	lessp-pop-stack	proves	that

the	applicat ion	of	pop	to	a	non-empty	stack	will	result 	in	a	stack	with	fewer	elements.	Theorem:	lessp-pop-stack	(is-stack	(s)	^

(:	is-empty	(s)))	!	(stack-length	(pop	(s))	<	stack-length	(s))

1

Satellite	funct ions	are	ones	that	are	in	the	ground-zero	data	base	of	the	prover.

92

CHAPTER	5.	THE	PARSING	SKELETON

The	tradit ional	de	nit ion	for	a	grammar	G	=	(N	T	P	S)	is	a	quadruple	consist ing	of	a	set 	N	of	nonterminal	and	a	set	T	of	terminal

symbols	with	N	\	T	=	fg,	a	set 	of	product ions	P	which	map	elements	of	N	to	sequences	of	symbols	from	N	T	,	and	an	axiom

symbol	S	.	One	major	di	erence	between	the	tradit ionally	de	ned	grammar	and	the	one	that	turned	out	to	be	useful	in	the	veri

cat ion	has	to	do	with	the	de	nit ion	of	the	axiom.	Normally,	the	axiom	S	is	the	symbol	from	the	left 	hand	side	for	a	speci	c

product ion	that	can	be	called	the	axiomat ic	product ion.	But	what	is	necessary	for	the	proof	of	the	generat ion	of	a	right 	derivat ion

is	the	knowledge	of	which	product ion	is	the	axiomat ic	product ion.	That	is	the	rst 	product ion	used	in	a	derivat ion	or	the	last

product ion	that	is	reduced,	and	not	which	symbol	was	expanded	or	reduced	to.	In	order	to	have	just 	one	product ion	labelled	with

the	axiom	symbol,	a	t radit ional	grammar	must	be	augmented	before	proceeding	with	parsing	table	generat ion.	Augmentat ion	is

the	process	of	introducing	an	explicit 	unique	axiom	product ion	into	the	grammar	which	uses	a	fresh	non-terminal	on	the	left 	hand

side	and	the	non-augmented	axiom	symbol	followed	by	a	fresh	terminal	denot ing	the	end	of	the	text 	on	the	right 	hand	side,	for

example	S	0	!S	a.	An	augmentat ion	step	can	easily	be	avoided	by	labelling	each	product ion	in	the	grammar	(which	must	be	done

anyway	in	order	to	produce	a	parse	rule)	and	giving	the	axiomat ic	product ion	label	as	the	axiom	A	in	a	quadruple	G	=	(N	T	P	A).

Since	product ions	are	often	numbered,	this	is	usually	the	product ion	0.	The	signatures	for	the	grammar	funct ions	that	will	be

used	elsewhere	are:	vocabulary	:	Grammar	;!	fV	ocabg	prod-nr	:	fProdg	Label	;!	Prod	nd-label	:	N	V	ocab	fProdg	;!	Label	is-wf-
grammar	:	Grammar	;!	B	The	grammar	constructor	and	destructor	funct ions	for	the	quadruple	will	be	obtained	by	using	a	shell.
with	recognizer	funct ion	symbol	is-grammar	,	and	4	accessors:	sel-nonterminals	,	with	type	restrict ion	(none-of)	and	default 	value

zero	sel-terminals	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-product ions	,	with	type	restrict ion	(none-of)	and

default 	value	zero	sel-axiom	,	with	type	restrict ion	(none-of)	and	default 	value	zero.

Event:	Add	the	shell	mk-grammar	,	with	bottom	object 	funct ion	symbol	empty-grammar	,

5.1.2	Grammar

The	funct ion	vocab	constructs	the	vocabulary	N	T	of	the	grammar.	Definit ion:	vocab	(grammar)	=	(sel-nonterminals	(grammar)

sel-terminals	(grammar))	Since	it 	will	be	necessary	to	access	the	components	of	a	product ion	and	they	should	not	open	up	so

that	the	proof	scripts	remain	somewhat	readable,	a	shell	will	also	be	used	for	represent ing	product ions.

Event:	Add	the	shell	mk-prod	,	with	bottom	object 	funct ion	symbol	empty-prod	,	with	recog-

nizer	funct ion	symbol	is-product ion	,	and	3	accessors:	sel-label	,	with	type	restrict ion	(one-of	numberp)	and	default 	value	zero

sel-lhs	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-rhs	,	with	type	restrict ion	(none-of)	and	default 	value	zero.	The

funct ion	prod-nr	is	used	in	the	parsing	funct ion	for	looking	up	the	product ion	associated	with	a	label	in	a	list 	of	product ions.

5.1.	DATA	TYPES

Definit ion:

93

prod-nr	(prods	,	label)	=	if	prods	'	nil	then	nil	elseif	sel-label	(car	(prods))	=	label	then	car	(prods)	else	prod-nr	(cdr	(prods),	label)

endif	The	inverse	funct ion,	nding	the	label	for	a	speci	c	left 	and	right 	hand	side,	is	given	in	the	funct ion	find-label.

Definit ion:

nd-label	(lhs	rhs	,	prods)	=	if	prods	'	nil	then	'no-such-label	elseif	(lhs	=	sel-lhs	(car	(prods)))	^	(rhs	=	sel-rhs	(car	(prods)))	then

sel-label	(car	(prods))	else	nd-label	(lhs	,	rhs	,	cdr	(prods))	endif)

If	a	parsing	table	is	to	be	generated,	there	must	exist 	two	metasymbols	that	are	not	already	members	of	the	set	of	vocabulary

symbols	that	can	be	used	to	denote	the	end	of	le	and	the	\dot"	that 	is	used	to	construct 	the	items.	These	can	be	represented

here	as	nullary	funct ions	that	return	the	representat ions	of	these	symbols.	They	are	included	here	as	they	must	be	part 	of	the

predicate	stat ing	that	the	vocabulary	does	not	include	either	of	them.

Definit ion:	end-of-file	=	'ef	Definit ion:	dot	=	'dot

The	well-formedness	of	a	grammar	is	of	vital	importance	in	the	proof	of	many	theorems,	as	they	do	not	hold	for	general

quadruples	but	only	those	which	have	speci	c	grammar	propert ies.	A	grammar	is	well	formed	if	and	only	if	it 	has	the	following

propert ies:	the	grammar	has	no	unused	product ions,	each	product ion	has	a	unique	label,	the	axiom	is	a	label	from	the

product ions	used,	the	terminals	and	the	nonterminals	are	disjunct,	the	metasymbols	used	in	construct ing	a	parsing	table	are	not

members	of	the	vocabulary,	and	the	set	of	tokens	used	in	the	product ions	is	a	subset	of	(or	equal	to)	the	vocabulary.	A	number

of	auxiliary	funct ions	must	be	de	ned	for	the	construct ion	of	the	conjuncts	in	the	well-formedness	predicate.	These	derive	the	set

of	all	left 	hand	sides,	the	set	of	all	right 	hand	side	symbols,	and	the	set	of	product ions	without	the	axiomat ic	product ion.	The

lat ter	is	needed	for	determining	that	there	are	no	unused	product ions	in	P	.	An	unused	product ion	will	be	one	for	which	the	left

hand	side	symbol	does	not	appear	in	any	right 	hand	side.	Since	the	left 	hand	sides	will	include	the	start 	symbol	from	the

axiomat ic	product ion,	which	should	not	appear	on	any	right 	hand	side,	the	axiom	product ion	is	removed	from	the	product ion	set

to	be	checked.

Definit ion:

no-unused-product ions	(prods	,	axiom)	=	left -hand-sides	(all-but-axiom	(prods	,	axiom))

right-hand-sides	(prods)

94

CHAPTER	5.	THE	PARSING	SKELETON

The	funct ion	labels	creates	the	set	of	all	the	labels	used.	If	any	are	repeated	they	will	be	subsumed	in	the	set,	and	thus	the

cardinality	of	the	set	of	labels	would	be	less	than	the	cardinality	of	the	set	of	product ions.	This	is	the	predicate	that	checks	the

well-formedness	of	a	grammar.

Definit ion:

is-wf-grammar	(grammar)	=	let 	prods	be	sel-product ions	(grammar),	nonts	be	sel-nonterminals	(grammar),	terms	be	sel-

terminals	(grammar),	axiom	be	sel-axiom	(grammar)

is-grammar	(grammar)	^	no-unused-product ions	(prods	,	axiom)	^	(card	(labs)	=	length	(prods))	^	(axiom	2	labs)	^	(intersect ion

(nonts	,	terms)	=	nil)	^	(end-of-file	62	vocab)	^	(dot	62	vocab)	^	right-hand-sides	(prods)	vocab	endlet 	endlet 	It 	is	advisable	to

ascertain	that	the	result 	of	applying	this	funct ion	to	any	grammar	used	returns	T	when	used	in	(R-LOOP).

in	let 	vocab	be	nonts	terms	,	labs	be	labels	(prods)	in

5.1.3	Set	Theory

Quite	a	bit 	of	elementary	set 	theory	is	necessary	for	the	formulat ion	of	parsing	theorems.	NQTHM	just 	has	a	rudimentary	sense

of	sets	{	they	are	implemented	as	lists,	and	the	groundzero	state	of	the	prover	provides	a	member	and	a	union	operator,	which

are	de	ned	as	operat ions	on	lists.	The	new	version	of	the	prover,	NQTHM-1992,	contains	a	number	of	libraries,	part icularly	for

bags,	i.e.	mult i-sets.	It 	is	not	necessary	to	have	a	complete	theory	of	sets,	however,	for	the	proofs.	Indeed,	having	lemmata	in

the	act ive	data	base	that	are	not	needed	can	be	a	major	source	of	interference	in	the	conduct ion	of	the	proof.	The	rst 	funct ion,

subsetp,	is	supposed	to	be	a	subset	recognizer.	A	close	inspect ion	of	the	funct ion,	however,	will	show	that	it 	is	a	weak	cousin	of

a	subset	recognizer.	It 	should	really	be	called	something	like	subbagp,	as	it 	just 	checks	if	all	elements	of	the	list 	a	are	also

elements	of	the	list 	b.	If	a	is	not	a	list 	(i.e.	a	literal	atom),	then	it 	is	considered	to	be	another	representat ion	for	the	empty	set,

normally	represented	as	just 	nil.

Definit ion:

subsetp	(a	,	b)	=	if	a	'	nil	then	t 	else	(car	(a)	2	b)	^	subsetp	(cdr	(a),	b)	endif	A	\real"	set 	is	one	which	is	either	a	representat ion

for	the	empty	set	or	a	list 	in	which	the	head	is	not	a	member	of	the	tail	of	the	list ,	i.e.	there	are	no	duplicate	members.	It 	would

introduce	too	much	complexity	into	the	proof	to	demand	that	everything	be	a	set	{	and	it 	is	in	fact 	not	necessary,	as	many	of	the

proofs	can	be	adequately	proved	on	the	basis	of	bags	and	lists.	The	fact 	that 	a	list 	has	no	duplicate	elements	is	often	not

necessary.	But	for	the	occasions	when	it 	necessary	to	have	a	duplicat ion	free	list ,	the	funct ion	setp	can	be	used.

5.1.	DATA	TYPES

Definit ion:

95

setp	(l)	=	if	:	listp	(l)	then	t 	else	(car	(l)	62	cdr	(l))	^	setp	(cdr	(l))	endif	The	cardinality	of	a	set 	is	just 	the	length	of	the	list

represent ing	the	set.	The	funct ion	list 	of	elements	that	occur	in	both	lists.	If	an	element	is	present	more	than	once	in	both	lists,

there	will	also	be	mult iple	elements	in	the	intersect ion.	If	a	list 	must	be	made	into	a	set ,	the	funct ion	mk-unique-set	can	be	used

to	force	removal	of	duplicates.

intersect ion	returns	a

Definit ion:

card	(l)	=	if	listp	(l)	then	1	+	card	(cdr	(l))

else	0	endif

Definit ion:

intersect ion	(x	,	y)	=	if	listp	(x)	then	if	car	(x)	2	y	then	cons	(car	(x),	intersect ion	(cdr	(x),	y))	else	intersect ion	(cdr	(x),	y)	endif

else	nil	endif

Definit ion:

mk-unique-set	(set)	=	if	set 	'	nil	then	nil	else	car	(set)	mk-unique-set	(cdr	(set))	endif

5.1.4	Lists

In	addit ion	to	the	basic	list 	funct ions	and	theorems	given	in	the	init ial	or	ground-zero	data	base,	a	number	of	other	funct ions	and

predicates	are	needed,	as	well	as	a	number	of	theorems	about	the	interact ions	between	a	number	of	often	used	funct ions.	The

length	of	a	list 	is	often	needed	for	a	computat ion	or	for	a	terminat ion	argument.

Definit ion:

length	(l)	=	if	:	listp	(l)	then	0	else	1	+	length	(cdr	(l))	endif	A	few	lemmata	about	empty	lists	and	the	interact ion	of	length	with

cons	are	useful.	The	lemmata	equal-length-0	and	length-nlistp	about	the	length	of	the	empty	list 	being	zero,	the	lemmata	length-

cons	demonstrates	the	interact ions	of	length	and	cons,	and	the	lemmata	lessp-length-cons	and	lessp-length-cdr	are	variat ions

of	the	above	lemmata	needed	for	the	introduct ion	of	some	complicated	de	nit ions,	for	example,	the	item-set-union	de	nit ion.

There	are	a	few	theorems	that	state	some	fact 	about	the	last 	member	of	a	list ,	so	a	funct ion	is	needed	to	determine	that

member.

Definit ion:

last 	(x)	=	if	x	'	nil	then	x	elseif	cdr	(x)	'	nil	then	x	else	last 	(cdr	(x))	endif

96

CHAPTER	5.	THE	PARSING	SKELETON

Lists	in	the	logic,	while	very	similar	to	Lisp	lists,	have	one	major	di	erence	{	nil	is	not	a	list ,	it 	is	a	literal	atom.	In	Lisp	nil	actually

has	two	types	and	this	is	impossible	in	the	logic.	In	order	to	specify	proper	lists,	that 	is	either	nil	or	a	cons	list 	with	nil	as	the	last

cdr,	a	recognizer	plistp	and	the	constructor	plist 	are	needed	to	make	a	proper	list 	out 	of	any	list .

Definit ion:

plist 	(l)	=	if	:	listp	(l)	then	nil	else	cons	(car	(l),	plist 	(cdr	(l)))	endif

Definit ion:

plistp	(l)	=	if	:	listp	(l)	then	l	=	nil	else	plistp	(cdr	(l))	endif	Quite	a	number	of	theorems	must	be	proven	about	plistp,	as	the	most

interest ing	theorems	only	hold	for	input	that 	is	a	proper	list .	It 	will	often	be	necessary	to	prove	that	new	funct ions	have	proper

lists	as	their	result ,	as	this	cannot	automat ically	be	discerned	by	the	prover	{	it 	only	knows	that	the	result 	is	either	a	list 	or	a	literal

atom.

Theorem:	plistp-nlistp	Theorem:	equal-plist

(l	'	nil)	!	(plistp	(l)	=	(l	=	nil))	plistp	(l)	!	(plist 	(l)	=	l)	plistp	(cons	(a	,	l))	=	plistp	(l)	The	prover	knows	very	few	facts	about	append,

so	some	rewrite	rules	are	needed.

Theorem:	plistp-cons

Theorem:	plistp-append

plistp	(append	(a	,	b))	=	plistp	(b)	(:	listp	(a))	!	(append	(a	,	b)	=	b)	append	(a	,	nil)	=	plist 	(a)	append	(append	(a	,	b),	c)	=

append	(a	,	append	(b	,	c))

Theorem:	append-left -id	Theorem:	append-nil

Theorem:	append-append

Tables	are	kept	in	associat ion	lists,	and	the	predicate	alistp	determines	if	the	parameter	is	such	a	list .	domain	returns	all	of	the

values	in	the	domain	of	an	associat ion	list 	and	value	looks	up	the	value	of	a	part icular	domain	element.

Definit ion:

alistp	(x)	=	if	listp	(x)	then	listp	(car	(x))	^	alistp	(cdr	(x))	else	x	=	nil	endif

5.1.	DATA	TYPES

Definit ion:

97

domain	(map)	=	if	listp	(map)	then	if	listp	(car	(map))	then	cons	(car	(car	(map)),	domain	(cdr	(map)))	else	domain	(cdr	(map))

endif

else	nil	endif

Definit ion:

value	(x	,	map)	=	if	listp	(map)	then	if	listp	(car	(map))	^	(x	=	caar	(map))	then	cdar	(map)	else	value	(x	,	cdr	(map))	endif

else	0	endif

In	di	erent	predicates	one	must	be	sure	that	some	list 	(\string")	only	contains	elements	that	are	the	member	of	some	vocabulary.

That	is	checked	by	the	following	funct ion.

Definit ion:

is-string-in	(string	,	vocab)	=	if	string	'	nil	then	t 	else	(car	(string)	2	vocab)	^	is-string-in	(cdr	(string),	vocab)	endif

5.1.5	Trees

The	parser	will	be	construct ing	a	parse	tree,	so	a	basic	data	type,	t ree,	is	needed.

De	nit ion	6	A	tree	is	an	ordered	acyclical	directed	graph	in	which	exact ly	one	node	(the

root)	has	in-degree	of	0	and	the	rest 	of	the	nodes	have	in-degree	of	1.	A	node	may	have	any	out-degree	0.	Nodes	with	out-

degree	=	0	are	referred	to	as	leaves.

A	tree	can	be	seen	as	a	data	type	consist ing	of	two	components:	a	root	component	and	a	branches	component.	The	branches

component	is	a	sequence	of	further	t rees.	If	any	of	the	t rees	consist 	only	of	a	root,	then	it 	is	a	leaf.	For	modeling	sequences	the

ordered	pair	shell	cons	can	be	used.	The	funct ion	car	accesses	the	head	of	the	list ,	the	funct ion	cdr	accesses	the	tail	of	the	list .

The	empty	sequence	can	be	modeled	by	the	literal	atom	nil.	A	shell	is	useful	for	construct ing	a	t ree	for	which	there	is	no	type

restrict ion	on	the	node	component.

Event:	Add	the	shell	mk-tree	,	with	bottom	object 	funct ion	symbol	emptytree	,	with	recognizer

funct ion	symbol	is-t ree	,	and	2	accessors:	sel-root	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-branches	,	with

type	restrict ion	(none-of)	and	default 	value	zero.

Funct ions	are	needed	for	collect ing	the	nodes	or	for	collect ing	the	leaves	of	a	forest 	of	t rees.	They	will	be	needed	for	stat ing	and

proving	some	invariants	of	parsing.	The	leaf	collector	needs	to	determine	the	front ier	of	a	single	t ree,	and	predicates	are	needed

which	indicate	if	a	node	is	a	leaf	or	if	one	tree	is	a	subtree	of	another.	is-leaf	:	is-subtree	:	front ier	:	leaves	:	Tree	;!	B	Tree	Tree	;!
B	Tree	;!	V	ocab

Tree	;!	V	ocab

98	roots	:	node-ct 	:	get-prods	:	nodes	:	Tree	;!	N	Tree	fProdg	;!	fProdg

CHAPTER	5.	THE	PARSING	SKELETON

Tree	;!	V	ocab	Tree

fProdg	;!	fProdg

A	tree	is	called	a	leaf	if	there	are	no	branches.

Definit ion:	is-leaf	(t ree)	=	(is-t ree	(t ree)	^	(sel-branches	(t ree)	=	nil))

A	subtree	of	a	t ree	is	any	node	in	the	tree	complete	with	all	descendents.	Since	the	logic	does	not	permit 	mutually	recursive

funct ions,	both	bodies	of	the	funct ions	must	be	combined	into	one	and	the	decision	which	body	is	to	be	executed	depends	on	the

value	of	an	addit ional	parameter,	the	tag.	One	should	probably	take	the	union	of	the	parameters	of	both	funct ions,	i.e.	a	t ree	for

the	tree	case	and	branches	for	the	branches	case.	However,	since	both	are	never	needed	at 	the	same	t ime	and	it 	simpli	es	the

proof,	just 	one	parameter	is	used	for	both.

Definit ion:

is-subtree	(tag	,	sub	,	t ree)	=	if	tag	=	't ree	then	if	(emptytree	=	t ree)	_	(:	is-t ree	(t ree))	then	f	elseif	sub	=	t ree	then	t 	else	is-

subtree	('branches,	sub	,	sel-branches	(t ree))	endif	elseif	t ree'	nil	then	f	else	is-subtree	('t ree,	sub	,	car	(t ree))	_	is-subtree

('branches,	sub	,	cdr	(t ree))	endif	A	small	theorem	can	be	proven	to	strengthen	the	convict ion	that	this	funct ion	is	implemented

correct ly:	A	t ree	is	a	subtree	of	itself.

Theorem:	subtree-re	exive	(is-t ree	(t ree)	^	(t ree	6=	emptytree))	!	is-subtree	('t ree,	t ree	,	t ree)

An	interest ing	subt lety	was	pointed	out	by	the	prover:	It 	turned	out	that 	it 	was	necessary	to	di	erent iate	between	leaves	in

general	and	the	leaves	of	a	part icular	t ree.	The	prover	had	trouble	proving	theorems	about	the	front ier	for	the	case	in	which	the

nodes	themselves	were	trees	(since	a	node	can	be	of	any	type).	Of	course,	in	such	a	case	the	tree	would	indeed	have	leaves	(as

components	of	the	node)	which	were	not	t ree	leaves	and	thus	not	members	of	the	front ier!	So	the	de	nit ion	of	leaves	in	a	t ree

must	be	strengthened	to	be	a	leaf	and	to	be	a	subtree	of	the	t ree	in	quest ion.

Definit ion:

is-leaf-in	(node	,	t ree)	=	(is-leaf	(node)	^	is-subtree	('t ree,	node	,	t ree))	The	front ier	is	de	ned	by	Aho	and	Ullman	AU72,	p.	140]

as	a	string	obtained	by	concatenat ing	the	labels	of	the	leaves	in	order	from	the	left .	The	front ier	implementat ion	is	similar	to	the

is-subtree	predicate	in	that	a	tag	is	used	to	control	the	recursion.	When	something	has	been	reached	that	is	a	leaf	when	the	tree

tag	is	act ive,	the	label	in	the	node	is	selected	and	returned	as	a	singleton	list .	When	the	branch	tag	is	act ive,	the	front ier	list 	for

each	of	the	t rees	in	the	branch	are	appended	in	order	from	left 	to	right .

5.1.	DATA	TYPES

Definit ion:

99

front ier	(tag	,	item)	=	if	tag	=	't ree	then	if	(:	is-t ree	(item))	_	(item	=	emptytree)	then	nil	elseif	is-leaf	(item)	then	list 	(sel-root

(item))	else	front ier	('branches,	sel-branches	(item))	endif	elseif	item'	nil	then	nil	else	append	(front ier	('t ree,	car	(item)),	front ier

('branches,	cdr	(item)))	endif	The	front ier	funct ion	is	not	a	t rivial	one,	so	theorems	about	propert ies	of	the	funct ion	result 	should

be	proven.	One	theorem	is	that 	all	leaves	in	a	t ree	are	members	of	the	front ier.

Theorem:	all-leaves-in-front ier

(is-leaf-in	(subtree	,	t ree)	^	is-t ree	(t ree))	!	(sel-root	(subtree)	2	front ier	('t ree,	t ree))	For	this	proof	three	lemmata	are	needed.

The	rst 	is	a	base	case	that	shows	the	front ier	of	a	leaf	is	just 	the	singleton	list 	containing	the	leaf	label.

Theorem:	leaf-front ier

front ier	('t ree,	mk-tree	(v	,	nil))	=	list 	(v)

The	second	is	a	theorem	stat ing	the	relat ionship	between	the	funct ions	member	and	append.	Since	the	theorem	uses	the

funct ion	member	and	the	front ier	funct ion	uses	append,	one	expects	to	have	to	demonstrate	the	exact	relat ionship,	and	indeed,

the	proof	will	not 	go	through	without	this.

Theorem:	member-append

(x	2	append	(a	,	b))	=	((x	2	a)	_	(x	2	b))

The	third	is	the	key	lemma,	which	demonstrates	that	if	a	leaf	is	a	subtree	of	a	t ree,	then	the	label	is	a	member	of	the	front ier	and

vice	versa.

Theorem:	is-subtree-leaf-is-member-front ier

is-subtree	(tag	,	mk-tree	(z	,	nil),	t ree)	=	(z	2	front ier	(tag	,	t ree))

One	might	now	expect	to	at tempt	to	prove	that	no	labels	of	inner	nodes	are	contained	in	the	front ier.	This	is	the	case,	in	the

speci	c	form	of	parse	trees,	in	which	non-terminal	symbols	of	the	context-free	grammar	label	the	inner	nodes	and	tokens

represent ing	the	terminal	symbols	decorate	the	leaves.	But	in	the	general	t ree	case	this	is	not	a	theorem,	as	noted	above	{	it 	is

possible	for	the	label	contained	in	some	inner	node	to	happen	to	be	the	same	as	the	label	for	some	leaf.	This	case	was	noted	by

the	prover	during	an	at tempt	to	prove	such	a	fact .	The	theorem	is	just 	that 	all	symbols	in	the	front ier	have	a	corresponding	leaf	in

the	tree.

Theorem:	only-leaves-in-front ier

((x	2	front ier	('t ree,	t ree))	^	is-t ree	(t ree))	!	is-leaf-in	(mk-tree	(x	,	nil),	t ree)

100

CHAPTER	5.	THE	PARSING	SKELETON

These	two	theorems	are	not	yet 	su	cient	to	guarantee	that	an	implementat ion	of	front ier	is	correct 	{	a	silly	implementat ion	that

collects	the	leaves	backwards	would	also	have	the	above	propert ies.	So	it 	must	be	shown	that	the	tokens	are	collected	in	order.

Either	a	preorder	or	a	postorder	print ing	of	the	nodes	can	be	used.	Since	there	are	no	inner	nodes	in	the	front ier,	it 	is	irrelevant

where	they	are	placed	with	respect	to	the	leaves.	It 	can	be	shown	that	the	front ier	is	a	sub-sequence	of	the	ordered	print ing	of

the	nodes.	The	parameters	x	and	y	are	in	the	sub-sequence	relat ion	when	all	the	elements	of	x	are	found	in	y	in	the	given	order.

That	is,	y	may	have	arbit rary	elements	inserted	at 	any	posit ion.	This	is	the	de	nit ion	of	the	preorder	print ,	rst 	the	node	label	is

printed	and	then	all	of	the	branches	are	printed.	Since	the	funct ion	cdrs	down	the	list ,	the	branches	they	are	being	printed	from

the	left .

Definit ion:

preorder-print 	(tag	,	t ree)	=	if	tag	=	't ree	then	if	(:	is-t ree	(t ree))	_	(t ree	=	emptytree)	then	nil	else	append	(list 	(sel-root	(t ree)),

preorder-print 	('branches,	sel-branches	(t ree)))	endif	elseif	t ree'	nil	then	nil	else	append	(preorder-print 	('t ree,	car	(t ree)),

preorder-print 	('branches,	cdr	(t ree)))	endif	This	is	the	de	nit ion	of	subsequence.	It 	has	a	t ricky	induct ion	structure,	somet imes

cdring	down	both	parameters	and	sometimes	only	down	the	second	one.

Definit ion:

subseq	(x	,	y)	=	if	x	'	nil	then	t 	elseif	y'	nil	then	f	else	((car	(x)	=	car	(y))	^	subseq	(cdr	(x),	cdr	(y)))	_	((car	(x)	6=	car	(y))	^

subseq	(x	,	cdr	(y)))	endif	This	lemma,	due	to	Matt 	Kaufmann,	is	the	key	to	the	other	proofs.	I	could	see	that	I	needed	subseq-

cons-1	to	prove	subseq-cons-2	and	vice	versa,	but	it 	was	Matt 's	observat ion,	that 	the	double	implicat ion	in	subseq-cons-lemma

would	be	helpful	in	proving	both,	that 	helped	this	go	through.

Theorem:	subseq-cons-lemma

(subseq	(x	,	y)	!	subseq	(cdr	(x),	y))	^	(subseq	(x	,	cdr	(y))	!	subseq	(x	,	y))

As	always,	it 	must	be	shown	how	newly	introduced	funct ions	interact 	with	funct ions	already	exist ing	in	the	theory.	Four	lemmata

are	needed	about	combinat ions	of	subseq,	cons	and	append.

Theorem:	subseq-cons-1

subseq	(cons	(a	,	x),	y)	!	subseq	(x	,	y)	subseq	(x	,	y)	!	subseq	(x	,	cons	(b	,	y))	subseq	(cons	(x	,	z),	u)	!	subseq	(z	,	append	(v

,	u))

Theorem:	subseq-cons-2

Theorem:	subseq-cons-append

5.1.	DATA	TYPES

Theorem:	subseq-append-append

101

(subseq	(b	,	u)	^	subseq	(a	,	y))	!	subseq	(append	(a	,	b),	append	(y	,	u))

This	is	the	ordering	theorem,	that	the	front ier	of	a	t ree	is	a	sub-sequence	of	the	preorder	print ing	of	that 	t ree.

Theorem:	subseq-front ier-preorder

subseq	(front ier	(tag	,	t ree),	preorder-print 	(tag	,	t ree))

The	leaves	of	a	list 	of	t rees	consists	of	a	list 	of	the	front iers	of	each	of	the	t rees	in	list 	order.	Other	predicates	dealing	with	this

funct ion	can	be	found	in	sect ion	5.3.2,	where	the	invariant	proof	is	discussed.

Definit ion:

leaves	(t rees)	=	if	t rees	'	nil	then	nil	else	append	(front ier	('t ree,	car	(t rees)),	leaves	(cdr	(t rees)))	endif	The	roots	funct ion,

which	will	be	used	in	retrieving	the	grammar	product ions	from	the	tree,	takes	a	list 	of	t rees	and	constructs	a	list 	of	the	roots	of

each	tree	in	order,	to	be	used	as	the	right 	hand	side	of	a	product ion.

Definit ion:

roots	(t rees)	=	if	t rees'	nil	then	nil	elseif	is-t ree	(car	(t rees))	then	append	(list 	(sel-root	(car	(t rees))),	roots	(cdr	(t rees)))

else	nil	endif

The	funct ion	node-ct 	returns	the	number	of	inner	nodes	in	a	t ree.

Definit ion:

node-ct 	(t ree)	=	if	is-leaf	(t ree)	_	(:	is-t ree	(t ree))	then	0	else	1	+	for	i	in	sel-branches	(t ree)	sum	node-ct 	(i)	endfor	endif	This	is

the	number	of	inner	nodes	for	all	the	t rees	on	the	tree	stack.	This	number	should	be	the	same	as	the	number	of	product ions	that

have	been	recognized	up	to	this	point .

Definit ion:

node-count	(t ree-stack)	=	if	is-empty	(t ree-stack)	_	(:	is-stack	(t ree-stack))	then	0	else	node-ct 	(top	(t ree-stack))	+	node-

count	(pop	(t ree-stack))	endif	The	funct ion	get-prods	retrieves	an	unlabelled	product ion	for	every	inner	node	in	a	t ree.	It 	will	be

needed	for	an	invariant	proof	in	sect ion	5.3.4.	This,	too,	is	a	mutually	recursive	funct ion	and	uses	a	tag	to	select 	which	funct ion

body	is	needed.

Definit ion:

get-prods	(ag	,	param)	=	if	ag	=	't ree

102

CHAPTER	5.	THE	PARSING	SKELETON

then	if	is-leaf	(param)	_	(:	is-t ree	(param))	_	(param	=	emptytree)	then	nil	else	mk-prod	(nil,	sel-root	(param),roots	(sel-

branches	(param)))	get-prods	('branches,	sel-branches	(param))	endif	elseif	ag	=	'sequence	then	if	param'	nil	then	nil	else	get-

prods	('t ree,	car	(param))	get-prods	('sequence,	cdr	(param))	endif	else	nil	endif

The	funct ion	nodes	is	a	rather	mis-named	funct ion	that	collects	the	set	of	unlabelled	product ions	for	all	t rees	in	a	stack	of	t rees.

Definit ion:

nodes	(t ree-stack	,	terms)	=	if	is-empty	(t ree-stack)	_	(:	is-stack	(t ree-stack))	then	nil	else	get-prods	('t ree,	top	(t ree-stack))

nodes	(pop	(t ree-stack),	terms)	endif

5.1.6	Con	gurat ions

All	data	structures	used	by	the	parser	will	be	collected	into	a	con	gurat ion.	A	con	gurat ion	is	a	seven-tuple	C	=	(input	states

symbols	t rees	parse	deriv	error)	with

input,	containing	the	input	symbols	that	have	not	yet 	been	consumed,	states,	a	stack	which	keeps	track	of	the	states	seen,

symbols,	a	stack	holding	the	symbols	which	have	been	shifted	or	added	through	reduct ions,	t rees,	a	stack	containing	the	forest

of	part ial	parse	trees,	parse,	a	list 	of	the	product ion	labels	used	to	produce	the	parse,	deriv,	the	derivat ion	constructed	so	far,

and	error,	an	error	ag.

Keeping	track	of	all	the	components	in	the	con	gurat ion	might	seem	excessively	ine	cient.	But	they	are	necessary	to	prove	the

invariants	of	parsing	correct .	When	the	proof	has	been	completed,	an	equivalent	parser	can	easily	be	constructed	that	ignores

unnecessary	components.	This	parser	will	work	much	faster	and	is	readily	proven	to	be	funct ionally	equivalent	to	the	rst 	one.	The

parser	begins	with	an	init ial	con	gurat ion	and	a	parsing	table	and	steps	through	the	parsing	act ions	unt il	either	the	acceptance

predicate	or	the	error	predicate	return	T.	There	is	not	an	explicit 	accept	act ion	as	discussed	in	sect ion	5.1.2.	The	acceptance

predicate	is	t rue	if	the	last 	label	in	the	parse	string	is	the	label	of	the	axiomat ic	product ion,	the	input	has	been	consumed	and	the

symbol	stack	is	empty.	If	a	parsing	table	should	request	reduct ion	by	the	axiom	when	the	other	condit ions	do	not	hold,	then	the

table	is	in	error	and	the	parse	will	be	agged	erroneous	in	the	next	step.	The	error	predicate	returns	T	upon	encountering	an	error

act ion	in	the	act ion	table,	when	an	at tempt	is	made	to	shift 	when	the	input	has	been	exhausted,

5.1.	DATA	TYPES

103

or	when	a	reduct ion	is	to	take	place	and	there	are	not	enough	trees	or	symbols	to	complete	the	reduct ion.	The	following	is	a	shell

de	nit ion	for	such	a	con	gurat ion2.

con	gurat ion	,	with	recognizer	funct ion	symbol	is-con	gurat ion	,	and	7	accessors:	sel-input	,	with	type	restrict ion	(none-of)	and

default 	value	zero	sel-states	,	with	type	restrict ion	(noneof)	and	default 	value	zero	sel-symbols	,	with	type	restrict ion	(none-of)

and	default 	value	zero	sel-t rees	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-parse	,	with	type	restrict ion	(none-of)

and	default 	value	zero	sel-deriv	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-error	,	with	type	restrict ion	(none-of)

and	default 	value	zero.

Event:	Add	the	shell	mk-con	gurat ion	,	with	bottom	object 	funct ion	symbol	unde	ned-

An	init ial	con	gurat ion	for	parsing	would	be	C	=	(input,	push	(start-state,	emptystack),	emptystack,	emptystack,	nil,	nil,	F)	The

start ing	state	is	0	by	convent ion,	but	should	properly	be	a	parameter	to	an	outer	parsing	funct ion	along	with	the	parsing	tables.

The	not ion	of	derivat ion	is	essent ial	to	understanding	why	parsing	works.	Normally,	a	derivat ion	is	not	explicit ly	constructed

during	parsing.	If	it 	should	ever	be	necessary	to	have	the	derivat ion,	it 	can	be	constructed	from	the	goal	with	the	parse	string.

However,	in	order	to	conduct	proofs	on	parsing,	it 	is	necessary	to	explicit ly	construct 	the	derivat ion.	If	the	parsing	algorithm

terminates,	there	exists	a	derivat ion	start ing	with	the	axiomat ic	product ion	result ing	in	the	input	string.	Depending	on	the	parsing

algorithm	used,	it 	can	also	be	shown	that	a	right 	derivat ion	has	been	constructed.	The	de	nit ion	given	in	AU72]	for	derivat ions	is

used	in	many	other	publicat ions.	The	most	general	form	is	for	rewrit ing	systems,	and	a	grammar	is	a	special	case	of	a	rewrit ing

system.	De	nit ion	7	(Rewrit ing	System)	A	rewrit ing	system,	sometimes	also	referred	to	as	a	Semi-Thue	system,	is	an	ordered

pair	RS	=	(V,	F)	where	V	is	an	alphabet	and	F	is	a	nite	set 	of	ordered	pairs	of	words	from	W(V).	The	elements	(P,Q)	in	the	set	of

replacement	rules	F	are	often	writ ten	as	P	!	Q	or	P	::=	Q.	De	nit ion	8	(Direct ly	Derives)	If	is	a	string	over	V	and	!	is	a	product ion	in

F,	then	one	can	say	that	direct ly	derives	from	,	writ ten	=)	.	From	the	binary	relat ion	=)	the	re	exive,	t ransit ive	closure	=)	can	be

de	ned	to	describe	a	nite	derivat ion.	De	nit ion	9	(Derivat ion,	Aho/Ullman)	A	word	Q	derives	from	a	word	P,	denoted	P	=)	Q,	when

there	exists	a	nite	sequence	of	words	P0	,	P1	:	:	:	Pk	,	k	0	such	that	P	=	P0	,	Q	=	lj	Pk	,	and	Pi	=)	Pi+1	for	0	i	k,	0	j	<	j	F	j.	The

sequence	P0	,	P1	,	:	:	:,	Pk	is	called	the	derivat ion	of	Q	from	P,	and	the	sequence	l0	:	:	:	lk;1	is	known	as	the	rule	sequence	or

parse	string	for	the	derivat ion.	The	Pi	are	also	referred	to	as	sentent ial	forms.

2	I	had	used	constraints	here	in	a	rst 	implementat ion	to	specify	that 	the	states,	symbols	and	trees	were	of	\type"	stack.	This	led

to	a	lot 	of	t rouble	in	proving	the	invariants.	For	example,	not	even	an	obvious	ident ity	funct ion	(Conf	=	mk-con	gurat ion	(...	all	the

selectors	applied	to	conf	...))	seemed	to	hold.	My	solut ion	was	to	remove	the	type	restrict ions,	and	the	proofs	went	through	with

the	type	restrict ions	added	in	theorem	hypotheses	as	necessary.	While	writ ing	this	chapter	I	discovered	that	the	problem	was

not	with	the	type	restrict ions,	but	with	a	missing	(if	(not 	(is-configurat ion	conf))	(error-conf)	(...))	in	the	funct ion	parsing-step.	I

considered	redoing	the	proofs,	but	since	this	could	have	an	e	ect 	on	most	of	the	invariant	proofs,	I	left 	it 	alone.

5.1.7	Derivat ions

104

CHAPTER	5.	THE	PARSING	SKELETON

This	de	nit ion,	although	quite	concise	mathematically,	is	a	di	cult 	concept	to	express	in	the	quant i	er-free	Boyer-Moore	logic.

Mayer	May78]	de	nes	derivat ions	in	rewrit ing	systems	quite	di	erent ly.	His	de	nit ion	and	the	notat ion	used	are	construct ive,	and

thus	quite	amenable	for	use	in	mechanized	veri	cat ion	with	NQTHM.	Mayer	begins	with	the	de	nit ion	of	a	derivat ion	step	and	then

de	nes	a	derivat ion	to	be	a	sequence	of	derivat ion	steps	that	interlock.	A	derivat ion	step	expands	a	sentent ial	form	at	a	speci	c

point 	which	matches	the	left -hand	side	of	a	product ion,	replacing	it 	with	the	right-hand	side.	This	is	illustrated	in	Figure	5.1.	l	l	A

::=	Figure	5.1:	A	Derivat ion	Step	A	r

\	\	\	\	\

r

and	Q	from	the	derivat ion	step	above	are	given	construct ively	with	the	use	of	two	funct ions,	Source	and	Target.	Source()	=	lAr

De	nit ion	10	(Derivat ion,	Mayer)	A	derivat ion	step	in	a	grammar	G	=	(N,	T,	P,	S)	is	a	3-tuple	=	l,	A	!	,	r]	such	that	l,	r	2	(N	T)	,	A	!

2	P.	The	sentent ial	forms	P

Target()	=	l	r

If	Source()	=	Target	()	the	derivat ion	step	is	said	to	be	an	ident ical	step.	A	nite,	non-empty	sequence	=	f	i	gn	of	derivat ion	steps

such	that	Source(i+1)	=	Target	(i)	for	1	i	<	n	is	called	a	derivat ion	from	Source	(1)	to	Target	(n).	If	Source	(1)	=	S	the

sequence	is	just 	called	the	derivat ion	of	Target	(n).	The	length	of	a	derivat ion	is	the	number	of	non-ident ical	derivat ion	steps	in

the	derivat ion.

Example:

The	following	grammar	Gexpression	is	a	grammar	for	recognizing	expressions	that	can	be	parenthesized,	but	do	not	have	to	be,

and	which	produces	a	parse	tree	that	faithfully	represents	the	priority	of	a	*	operat ion	before	a	+	operat ion.	Gexpression	=

(fS,E,T,Fg,	fa,+,*,(,)g,	f0	:	S	!	E,	1	:	E	!	E+T,	2	:	E	!	T,	3	:	T	!	T*F,	4	:	T	!	F,	5	:	F	!	(E),	6	:	F	!	ag,	0)	The	following	table	gives	an

example	of	the	derivat ion	according	to	Mayer	of	w	=	\a+a*a".	Since	the	Source(0)	=	S	and	the	Target(8)	=	w,	it 	can	be	seen

that	w	is	derivable	from	S	:	S	=)	w.	Since	all	right 	parts	are	sequences	of	symbols	from	T,	this	derivat ion	is	a	right 	derivat ion.

5.1.	DATA	TYPES

i

0	1	2	3	4	5	6	7	8

105	left 	Prod	S	!E	E	!E+T	E+	T	!T*F	E+T*	F	!a	E+	T	!F	E+	F	!a	E	!T	T	!F	F	!a	#	0	1	3	6	4	6	2	4	6	right

*a	*a	+a*a	+a*a	+a*a

Mayer's	derivat ion	de	nit ion	is	more	suited	to	veri	cat ion	with	NQTHM	for	a	number	of	reasons.	The	rst 	is	that 	both	existent ial

quant i	cat ions	that	are	implicit 	in	the	Aho/Ullman	de	nit ion	(that	is,	the	existence	of	a	suitable	non-terminal	in	the	source	word	and

of	a	suitable	product ion)	are	explicit ly	stated	in	the	de	nit ion.	The	sentent ial	forms	source	and	target	are	also	easy	to	construct

from	the	derivat ion	steps.	In	addit ion,	it 	is	easy	to	determine	if	a	left -	or	right-derivat ion	was	constructed:	If	l	2	T	or	r	2	T	for	all

derivat ion	steps	in	a	derivat ion,	then	the	derivat ion	is	a	left -	or	a	right-derivat ion.	The	de	nit ion	also	provides	a	good	basis	for	a

mechanical	proof	,	in	that 	if	the	Source()	is	a	sentent ial	form,	then	the	Target	()	is	also	a	sentent ial	form,	and	thus	all	targets

derived	from	the	axiomat ic	product ion	are	by	induct ion	also	sentent ial	forms.	A	shell	without	restrict ions	is	used	to	represent	a

derivat ion	step.

Event:	Add	the	shell	mk-derivat ion-step	,	with	bottom	object 	funct ion	symbol	unde	ned-

ds	,	with	recognizer	funct ion	symbol	is-derivat ion-step	,	and	3	accessors:	sel-left -derivat ionstep	,	with	type	restrict ion	(none-of)

and	default 	value	zero	sel-prod-derivat ion-step	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-right-derivat ion-step	,

with	type	restrict ion	(none-of)	and	default 	value	zero.

The	following	funct ions	are	used	to	extract 	informat ion	from	a	derivat ion	or	a	derivat ion	step.	pick-token-names	:	Token	;!	V
ocab	step-source	:	Derivat ionStep	;!	V	ocab	step-target	:	Derivat ionStep	;!	V	ocab	source	:	Derivat ion	;!	V	ocab	target	:
Derivat ion	;!	V	ocab	deriv-rule	:	Derivat ion	;!	Derivat ionRule	product ions	:	Derivat ion	;!	fProdg	is-derivat ion-in	:	Derivat ion
Grammar	;!	B	is-right-derivat ion-in	:	Derivat ion	Grammar	;!	B	For	all	elements	in	the	sequence,	the	funct ion	pick-token-names
picks	out	the	token	names	if	the	current	element	is	a	token	and	leaves	the	element	unchanged	if	it 	is	not.	Definit ion:	pick-token-

names	(l)	=	if	l	'	nil	then	nil	elseif	tokenp	(car	(l))	then	cons	(token-name	(car	(l)),	pick-token-names	(cdr	(l)))	else	cons	(car	(l),

pick-token-names	(cdr	(l)))	endif

106

CHAPTER	5.	THE	PARSING	SKELETON

The	funct ion	step-source	extracts	the	source	of	a	derivat ion	step,	and	step-target	extracts	the	target.

Definit ion:

step-source	(ds)	=	append	(pick-token-names	(sel-left -derivat ion-step	(ds)),	append	(sel-lhs	(sel-prod-derivat ion-step	(ds)),

pick-token-names	(sel-right-derivat ion-step	(ds))))

Definit ion:

step-target	(ds)	=	append	(pick-token-names	(sel-left -derivat ion-step	(ds)),	append	(sel-rhs	(sel-prod-derivat ion-step	(ds)),

pick-token-names	(sel-right-derivat ion-step	(ds))))	The	funct ions	source	and	target	do	the	same	for	a	derivat ion.	The	source	of

a	derivat ion	is	the	source	of	the	rst 	step,	the	target	of	the	derivat ion	is	the	target	of	the	last 	step.

Definit ion:

source	(derivat ion)	=	if	derivat ion	'nil	then	nil	else	step-source	(car	(derivat ion))	endif

Definit ion:

target	(derivat ion)	=	if	derivat ion'	nil	then	nil	else	step-target	(last 	(derivat ion))	endif	The	funct ion	deriv-rule	picks	out	the

derivat ion	rule	of	a	derivat ion,	corresponding	to	the	parse	string.	It 	is	a	list 	of	the	labels	of	the	product ions	used	in	construct ing

the	derivat ion.	The	funct ion	product ions	collects	up	all	the	product ions	used	in	the	derivat ion	into	a	set ,	to	determine	the	di	erent

product ions	used.

Definit ion:

deriv-rule	(derivat ion)	=	if	derivat ion	'nil	then	nil	else	append	(sel-label	(sel-prod-derivat ion-step	(car	(derivat ion))),	deriv-rule	(cdr

(derivat ion)))	endif

Definit ion:

product ions	(derivat ion)	=	if	derivat ion'	nil	then	nil	else	list 	(sel-prod-derivat ion-step	(car	(derivat ion)))	product ions	(cdr

(derivat ion))	endif	A	well-formed	derivat ion	with	respect	to	a	grammar	consists	only	of	product ions	from	the	grammar,

constructs	only	strings	that	are	in	the	vocabulary	of	the	grammar,	and	has	every	derivat ion	step	in	lockstep.	The	funct ion

lockstep	determines	if,	for	each	derivat ion	step	in	a	derivat ion,	the	target	sentence	is	equal	to	the	source	sentence	of	the	next

derivat ion	step.	This	ensures	that	each	step	is	well	connected	to	the	previous	and	following	steps.	The	funct ion	all-in-vocab

checks	that	all	of	the	elements	of	the	step	source	are	members	of	the	vocabulary.

5.1.	DATA	TYPES

Definit ion:

107

lockstep	(derivat ion)	=	if	(derivat ion	'	nil)	_	(cdr	(derivat ion)	'	nil)	then	t 	else	(step-source	(cadr	(derivat ion))	=	step-target	(car

(derivat ion))	indexstep-target)	^	lockstep	(cdr	(derivat ion))	endif

Definit ion:

all-in-vocab	(derivat ion	,	v)	=	if	derivat ion	'nil	then	t 	else	is-string-in	(pick-token-names	(step-source	(car	(derivat ion))),	v)	^	all-

in-vocab	(cdr	(derivat ion),	v)	endif

Definit ion:

is-derivat ion-in	(derivat ion	,	grammar)	=	(subsetp	(product ions	(derivat ion)	,	sel-product ions	(grammar))	^	all-in-vocab

(derivat ion	,	append	(vocab	(grammar),	list 	(end-of-file)))	^	lockstep	(derivat ion))

all-rights-terminal

A	derivat ion	is	a	right 	derivat ion	when	each	right 	part 	is	a	terminal	string.	The	predicate	checks	this	property	and	is	used	in	is-

right-derivat ion-in.

Definit ion:

all-rights-terminal	(derivat ion	,	terminals)	=	if	derivat ion'	nil	then	t 	else	is-string-in	(pick-token-names	(sel-right-derivat ion-step

(car	(derivat ion))),	terminals)	^	all-rights-terminal	(cdr	(derivat ion),	terminals)	endif

Definit ion:

is-right-derivat ion-in	(derivat ion	,	grammar)	=	(is-derivat ion-in	(derivat ion	,	grammar)	^	all-rights-terminal	(derivat ion	,	append

(sel-terminals	(grammar),	list 	(end-of-file))))	The	source	and	target	of	a	derivat ion	step	in	a	derivat ion	that	begins	with	a	step

using	the	axiomat ic	product ion	are	said	to	be	sentent ial	forms.	That	is,	they	can	be	derived	from	the	goal	of	a	grammar	and

represent	a	cut 	through	the	derivat ion	t ree.	Right-	and	left -sentent ial	forms	sat isfy	special	restrict ions	on	their	right 	or	left 	part .

For	right 	sentent ial	forms,	each	previous	step	of	the	derivat ion	proceeded	from	the	rightmost	non-terminal,	that 	is,	the	right 	part

is	a	terminal	string.	The	left 	sentent ial	form	proceeded	analogously	from	the	leftmost	non-terminal.	Using	the	Aho/Ullman	de

nit ion	of	derivat ion,	a	sentent ial	form	is	any	string	that	is	part 	of	the	nite	derivat ion	sequence.	With	the	Mayer	de	nit ion,	a

sentent ial	form	is	any	source	or	target	in	a	step	which	proceeds	from	the	axiomaic	product ion.	But	to	determine	if	a	part icular

string	is	a	sentent ial	form	with	respect	to	a	grammar,	one	must	nd	a	derivat ion	from	the	axiomat ic	product ion	to	this	form	{	that

is,	the	parsing	process	must	be	used	to	determine	if	such	a	derivat ion	exists!	Once	the	derivat ion	has	been	found	it 	is	t rivial	to

show	that	all	the	intermediate	steps	are	indeed	sentent ial	forms.	So	the	quest ion	arises	if	it 	is	at 	all	feasable	to	mechanically

prove	anything	about	sentent ial	forms.	A	predicate	stat ing	that	something	is	a	sentent ial	form	would	need	to	either	nd	a

5.1.8	Sentent ial	Forms

108

CHAPTER	5.	THE	PARSING	SKELETON

derivat ion	or	show	that	none	can	exist .	A	number	of	at tempts	were	made	to	formulate	a	predicate	stat ing	that	the	parsing

process	preserves	the	\sentent ial-form-ness"	of	a	string,	but	all	were	very	unwieldly.	Perhaps	this	would	be	a	good	area	for	using

the	existent ial	quant i	cat ion	extent ions	to	NQTHM.

5.1.9	The	Parsing	Tables

The	construct ion	of	the	tables	will	be	discussed	in	depth	in	Chapter	6.2.	This	sect ion	just 	discusses	the	lookup	funct ions	for	the

parsing	tables,	which	are	needed	for	driving	the	skeleton	parser.	The	signature	for	the	table	construct ion	funct ion	is	speci	ed

here	for	clarity.	There	are	two	tables,	an	act ion	table	and	a	goto	table.	The	act ion	table	looks	up	the	current	state	with	the

current	element	of	the	input	(a	terminal	symbol)	and	determines	which	act ion	{	shift ,	reduce,	or	error	{	is	to	be	taken.	The	goto

table	looks	up	the	symbol	on	the	left 	hand	side	of	the	reduce	product ion	with	the	current	state	to	determine	the	next	state	to	go

to.	act ion-lookup	:	T	State	Act ionTab	;!	Act ion	goto-lookup	:	N	State	GotoTab	;!	State	construct-tables	:	Grammar	;!	Tables
The	tables	will	always	be	passed	together	as	parameters.	Once	each	has	been	constructed,	they	are	consed	together	and	can

be	selected	out	as	needed.

Definit ion:	mk-tables	(act iontab	,	gototab)	=	cons	(act iontab	,	gototab)	Definit ion:	sel-act iontab	(tables)	=	car	(tables)

Definit ion:	sel-gototab	(tables)	=	cdr	(tables)

Act ions	can	either	consist 	of	a	state	(for	the	shift 	case),	a	label	and	a	left 	hand	side	and	a	size	(for	the	reduce	case),	or	just 	an

error	literal.	It 	was	decided	to	implement	them	(they	are	in	e	ect 	a	union	type)	as	tagged	lists.	That	means	that	the	name	of

each	act ion	is	the	rst 	element	of	the	list 	in	quoted	form.	Each	act ion	has	the	same	number	of	elements,	but	only	some	of	the

elements	are	valid	for	each	act ion.	One	does	not	need	to	analyse	the	structure	of	the	act ion	to	determine	which	sort 	it 	is.	The	rst

element	determines	which	other	elements	are	valid3.	An	example	of	each	act ion	is	given	below.

'(shift 	15	0	0	0)'	(reduce	0	6	'E	3)	'(error	0	0	0	0)

The	selector	funct ions	for	the	components	of	the	act ions	must	have	unique	names,	so	the	name	of	the	act ion	is	appended	to	the

funct ion	names	(sel-lhs	was	already	used	in	the	product ion	shell,	for	example).

Event:	Add	the	shell	mk-act ion	,	with	bottom	object 	funct ion	symbol	empty-act ion	,	with	recognizer	funct ion	symbol	is-act ion	,

and	5	accessors:	sel-act ion-tag	,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-state-shift 	,	with	type	restrict ion	(one-

of	numberp)	and	default 	value	zero	sel-label-reduce	,	with	type	restrict ion	(one-of	numberp)	and	default 	value	zero	sel-lhs-reduce

,	with	type	restrict ion	(none-of)	and	default 	value	zero	sel-size-reduce	,	with	type	restrict ion	(one-of	numberp)	and	default 	value

zero.

3

This	method	of	implement ing	union	types	is	discussed	in	more	detail	in	BWW91].

5.2.	THE	PARSING	FUNCTION

109

Definit ion:	mk-shift -act ion	(state)	=	mk-act ion	('shift ,	state	,	0,	0,	0)	Definit ion:	mk-reduce-act ion	(label	,	lhs	,	size)	=	mk-act ion

('reduce,	0,	label	,	lhs	,	size)	Definit ion:	mk-error-act ion	=	mk-act ion	('error,	0,	0,	0,	0)

The	funct ions	act ion-lookup	and	goto-lookup	look	up	the	mapping	values	in	their	respect ive	tables.

Definit ion:	mk-selector	(state	,	symbol)	=	list 	(state	,	symbol)	Definit ion:

act ion-lookup	(terminal	,	state	,	act iontab)	=	let 	key	be	mk-selector	(state	,	terminal)	in	cdr	(assoc	(key	,	act iontab))	endlet

Definit ion:

goto-lookup	(lhs	,	state	,	gototab)	=	let 	key	be	mk-selector	(state	,	lhs)	in	cdr	(assoc	(key	,	gototab))	endlet

5.2	The	Parsing	Funct ion

The	basic	parsing	step	is	de	ned	as	a	con	gurat iontransformat ion.	Depending	on	the	act ion	de	ned	in	the	parsing	tables	for	the

state	on	the	top	of	the	state	stack	and	the	current	input	symbol,	either

shift 	the	current	lookahead	onto	the	symbol	stack,	determine	the	next	state	from	the	parsing	tables	and	push	it 	onto	the	state

stack,	and	push	a	t ree	consist ing	of	a	leaf	containing	the	symbol	onto	the	tree	stack	reduce	using	a	product ion	from	the	grammar

by

{	adding	the	label	of	the	product ion	to	the	end	of	the	parse	string,	{	put t ing	the	next	derivat ion	step	on	the	front	of	the	derivat ion,

{	removing	n	symbols	from	the	symbol	stack	(n	is	the	length	of	the	right 	hand	side	{	{	{	{	{

of	the	product ion	to	be	reduced,	if	there	are	not	enough	symbols	on	the	stack	or	if	the	symbol	stack	does	not	correspond	to	the

product ion's	right 	hand	side,	the	error	ag	is	set),	pushing	the	symbol	of	the	left 	hand	side	of	the	product ion	onto	the	symbol

stack,	popping	n	states	from	the	state	stack,	pushing	the	state	determined	by	the	control	table	onto	the	state	stack,	removing

the	top	n	elements	of	the	t ree	stack,	and	pushing	a	new	tree	onto	the	tree	stack	consist ing	of	a	node	labelled	by	the	left 	hand

side	of	the	product ion	and	branches	with	the	roots	of	the	t rees	removed

in	the	order	given	while	the	input	remains	unchanged	or	set 	the	error	ag.

110

CHAPTER	5.	THE	PARSING	SKELETON

As	described	above,	there	is	no	explicit 	accept	act ion	in	this	de	nit ion	of	parsing.	Rather	acceptance	is	a	property	of	a	con

gurat ion.	The	axiom	of	the	grammar	is	a	product ion	label,	not 	a	symbol.	If	a	reduct ion	by	the	product ion	with	the	label	of	the

axiomat ic	product ion	has	taken	place,	the	input	has	been	exhausted,	and	there	are	no	extraneous	symbols	on	the	symbol	stack,

then	the	con	gurat ion	is	accept ing.	A	con	gurat ion	is	said	to	be	in	error	when	the	error	ag	is	set .	The	funct ion	parsing-step	carries

out	the	above	act ions.	As	the	parsing	step	is	not	recursive,	there	is	no	terminat ion	problem.	The	non-recursive	funct ion	reduce-

trees	was	introduced	so	that	it 	was	possible	to	prove	invariance	theorems	about	the	e	ect 	that 	a	speci	c	reduct ion	has	on	the

tree	stack.	Before	the	reduct ion	is	carried	out,	a	check	is	made	if	there	are	enough	elements	on	the	stack	and	if	the	right 	hand

side	matches	the	symbol	stack	(which	contains	the	roots	of	the	t ree	stack,	as	stated	in	the	conjecture	roots	in	sect ion	5.3.3).

This	will	reassure	us	that	the	grammar	has	called	for	the	reduct ion	by	the	proper	product ion.

Definit ion:

reduce-trees	(lhs	,	size	,	t rees)	=	if	(stack-length	(t rees)	<	size)	_	(:	is-stack	(t rees))	_	(size	'	0)	then	emptystack	else	push

(mk-tree	(lhs	,	top-n	(size	,	t rees))	,	pop-n	(size	,	t rees))	endif

Definit ion:

matches-stack	(l	,	s)	=	if	:	is-stack	(s)	then	f	elseif	is-empty	(s)	then	l	'	nil	elseif	l	'	nil	then	t 	else	(car	(l)	=	top	(s))	^	matches-

stack	(cdr	(l),	pop	(s))	endif

Definit ion:

parsing-step	(conf	,	tables	,	grammar)	=	let 	input	be	sel-input	(conf),	states	be	sel-states	(conf)	,	symbols	be	sel-symbols	(conf

)	,	t rees	be	sel-t rees	(conf)	,	parse	be	sel-parse	(conf)	,	deriv	be	sel-deriv	(conf)	,	error	be	sel-error	(conf)	,	prods	be	sel-

product ions	(grammar)

in	if	input	'	nil	then	mk-con	gurat ion	(input	,	states	,	symbols	,	t rees	,	parse	,	deriv	,	t)	else	let 	act 	be	act ion-lookup	(token-name

(car	(input)),	top	(states),	sel-act iontab	(tables))	in	case	on	sel-act ion-tag	(act):	case	=	error	then	mk-con	gurat ion	(input	,

states	,	symbols	,	t rees	,	parse	,	deriv	,	t)	case	=	shift 	then	let 	s	be	sel-state-shift 	(act)	in

mk-con	gurat ion	(cdr	(input),

5.2.	THE	PARSING	FUNCTION

push	(s	,	states),	push	(token-name	(car	(input)),	symbols),	push	(mk-tree	(car	(input),	nil),	t rees),	parse	,	deriv	,	f)	endlet

111

case	=	reduce	then	let 	label	be	sel-label-reduce	(act)	,	lhs	be	car	(sel-lhs-reduce	(act)),	size	be	sel-size-reduce	(act)	in	let 	rhs

be	sel-rhs	(prod-nr	(label	,	prods))	in	if	(stack-length	(t rees)	<	size)	_	(:	matches-stack	(reverse	(rhs),	symbols))	_	(size	'	0)

then	mk-con	gurat ion	(input	,	states	,	symbols	,	t rees	,	parse	,	deriv	,	t)	else	let 	goto	be	goto-lookup	(lhs	,	top	(pop-n	(size	,

states)),	sel-gototab	(tables))	in

mk-con	gurat ion	(input	,	push	(goto	,	pop-n	(size	,	states)),	push	(lhs	,	pop-n	(size	,	symbols)),	reduce-trees	(lhs	,	size	,	t rees),

append	(parse	,	list 	(label)),	append	(list 	(mk-derivat ion-step	(from-bottom	(pop-n	(size	,	symbols)),	mk-prod	(label	,	lhs	,	top-n

(size	,	symbols)),	pick-token-names	(input))),	deriv),	f)	endlet 	endif	endlet 	endlet 	otherwise	mk-con	gurat ion	(input	,	states	,

symbols	,	t rees	,	parse	,	deriv	,	t)

endcase	endlet 	endif	endlet

An	accept ing	con	gurat ion	is	one	in	which	the	input	has	been	exhausted	and	the	last 	product ion	label	of	the	parse	string	is	the

axiom	of	the	grammar.

Definit ion:

accept-is	(conf	,	axiom)	=	((car	(sel-input	(conf))	=	mk-token	(end-of-file,	nil))	^	(last 	(sel-parse	(conf))	=	list 	(axiom)))	The

funct ion	error	returns	the	error	component	of	a	con	gurat ion.

Definit ion:	error	(conf)	=	sel-error	(conf)

The	skeleton	parser	parse-it 	executes	a	parsing	step	unt il	an	error	occurs	or	an	accept ing	con	gurat ion	is	reached.	This	method

of	simulat ing	a	while	statement	permits	invariants	to	be	stated	that	must	hold	from	one	parsing	step	to	the	next.	The	funct ion

takes	a	con	gurat ion,	the	parsing	tables,	the	grammar,	and	a	clock	as	parameters.	The	clock	is	needed,	as	NQTHM	could	not	be

convinced	that	parsing	terminates.

Definit ion:

parse-it 	(conf	,	tables	,	grammar	,	clock)

112

CHAPTER	5.	THE	PARSING	SKELETON

=	if	clock	'	0	then	conf	elseif	error	(conf)	_	accept ing	(conf	,	sel-axiom	(grammar))	then	conf	else	parse-it 	(parsing-step	(conf	,

tables	,	grammar),	tables	,	grammar	,	clock	;	1)	endif	The	parser	constructs	the	table	from	the	grammar4	and	calls	parse-it 	on
an	init ial	congurat ion.	The	init ial	con	gurat ion	was	given	in	Sect ion	5.1.6	The	input	must	be	extended	to	have	an	end-of-	le

marker	token	concatenated	on	the	end.	The	length	of	the	input	t imes	twice	the	number	of	product ions	can	be	used	as	an	upper

bound	for	the	clock.	This	is	not	the	least	upper	bound,	but	if	the	grammar	is	acyclic,	this	will	su	ce.	The	result 	of	parser	is	also	a

con	gurat ion,	which	can	be	examined	for	acceptance	or	from	which	interest ing	components	such	as	the	derivat ion	or	the	parse

string	can	be	selected	for	further	use.

Definit ion:

parser	(string	,	tables	,	grammar)	=	parse-it 	(mk-con	gurat ion	(append	(string	,	list 	(mk-token	(end-of-file,	nil))),	push	(0,

emptystack),	emptystack,	emptystack,	nil,	nil,	f),	tables	,	grammar	,	(length	(string)	2)	length	(sel-product ions	(grammar)))	A

parser,	as	noted	above,	has	no	obvious	terminat ion	condit ion.	There	exist ,	for	example,	in	nite	derivat ions	in	a	grammar	if	the

grammar	(and	thus	the	parser)	is	cyclic.	For	example,	in	the	grammar	GS	=	(fSg,	fag,	fS	=)	SS,	S	=)	a,	S	=)	g,	S),	every

sentent ial	form	has	an	in	nite	number	of	derivat ions.	Mayer	May78,	p.70-74]	discusses	this	problem	at	length	by	de	ning	a	non-

cyclic	nite-state	push-down	acceptor.	That	is,	one	with	no	in	nite	reduct ion	chains	which	do	not	change	either	the	length	of	the

input	or	the	depth	of	the	stack.	He	then	o	ers	a	construct ion	method	of	such	an	acceptor	from	a	cyclic	one	by	ident ifying	the

cycle	start ing	points.	These	are	the	con	gurat ions	from	which	such	in	nite	cycles	can	start .	Two	new	states	are	added	to	the

table,	one	is	a	nal	state	and	the	other	is	not.	If	a	nal	state	was	encountered	just 	before	the	in	nite	chain	begins,	a	t ransit ion	to

the	new	nal	state	is	added	to	the	table	from	the	current	cycle	start ing	point .	If	not ,	a	t ransit ion	to	the	non-	nal	state	is	added.

Now	transit ions	are	added	for	all	elements	of	the	nite	alphabet	from	the	new	nal	state	to	the	non-	nal	state	{	if	the	input	was

exhausted	just 	at 	the	start ing	point 	for	the	cycle,	then	the	acceptor	accepts,	if	not 	the	string	is	not	acceptable.	From	the	non-

nal	state	t ransit ions	are	added	on	each	symbol	in	the	alphabet	back	to	itself	so	that	the	input	is	consumed	in	this	case	and	there

is	not	an	accept ing	con	gurat ion	since	the	stack	is	not	empty.	Mayer	proves	the	equivalence	of	these	two	classes	of	automata,

and	then	o	ers	a	measure	for	the	parsing	step.	He	concludes	that	the	maximal	number	of	con	gurat ions	is

j	w	j	(b	+	1)	l	+	2

Using	NQTHM	to	do	this	with	the	methods	described	in	Chapter	6	for	the	language	PLR	0	took	around	3	hours	of	CPU	t ime	(6-7

hours	of	real	t ime)	on	a	light ly	loaded	SPARC	stat ion	with	16	MB	of	memory.	This	is	an	important	reason	for	not	using	this

funct ion	more	often	than	absolutely	necessary	{	it 	takes	far	too	long.	Instead,	the	tables	should	be	generated	and	stored,	and

then	passed	as	parameters	to	parse-it 	with	an	appropriate	init ial	con	gurat ion.

4

5.3.	THE	INVARIANTS	OF	PARSING

113

where	b	is	the	longest	-chain	(and	this	must	exist ,	or	it 	is	not	a	non-cyclic	acceptor)	and	l	is	the	maximal	depth	of	the	stack.	He

assigns	a	characterist ic	number	to	each	con	gurat ion	with	stack	length	lx	and	remaining	input	x:

lx+	j	x	j	(b	;	1)	l
and	notes	that	this	decreases	on	every	step	{	either	an	input	symbol	is	consumed	or	the	stack	decreases,	or	one	of	a	nite

number	of	-steps	is	taken.

5.3	The	Invariants	of	Parsing

The	following	predicates	are	invariants	that	must	hold	between	consecut ive	parsing	con	gurat ions,	in	order	for	a	parser	skeleton

to	work	correct ly.	They	concern	the	following	relat ionships:	than	the	state	stack.	Leaves	The	concatenat ion	of	the	leaves	of	the

tree	stack,	read	from	the	bottom	with	the	rest 	of	the	input,	remains	constant.	Right	sentent ial	form	The	concatenat ion	of	the

symbol	stack	read	from	the	bottom	with	the	rest 	of	the	input	is	a	right 	sentent ial	form.	Number	of	reduct ions	The	number	of	non-

leaf	nodes	in	the	tree	stack	is	equal	to	the	length	of	the	parse	string	which	contains	the	reduct ion	sequence.	Roots	The	roots	of

the	reverse	order	of	the	forest 	on	the	tree	stack	is	the	same	as	the	reverse	order	of	the	symbol	stack.

Stack	size	The	symbol	and	the	tree	stacks	are	always	the	same	length	and	one	element	shorter

Nodes	Each	inner	node	in	a	t ree	on	the	tree	stack	represents	a	product ion	from	the	grammar.

5.3.1	Stack	Size

The	state	stack	is	always	one	longer	than	the	symbol	stack	or	the	t ree	stack	since	the	init ial	con	gurat ion	of	the	state	stack

consists	of	the	init ial	state	pushed	onto	the	empty	stack	while	the	others	are	just 	empty	stacks.	The	tree	stack	and	the	symbol

stack	are	always	of	equal	length.	stack-length	(c.states)	=	(stack-length	(c.symbols)	+	1)	^	stack-length	(c.symbols)	=	stack-

length	(c.t rees)	This	was,	as	expected,	an	easy	invariant	to	prove.	The	shift 	case	was	provable	without	further	lemmata.

Theorem:	inv-stack-size-shift

((next	=	mk-con	gurat ion	(cdr	(input),	push	(s	,	states),	push	(token-name	(car	(input)),	symbols),	push	(mk-tree	(car	(input),

nil),	t rees),	parse	,	deriv	,	f))	^	is-stack	(symbols)

114

CHAPTER	5.	THE	PARSING	SKELETON

^	is-stack	(states)	^	is-stack	(t rees)	^	((stack-length	(t rees)	=	stack-length	(symbols))	^	((1	+	stack-length	(symbols))	=	stack-

length	(states))))	!	((stack-length	(sel-t rees	(next))	=	stack-length	(sel-symbols	(next)))	^	((1	+	stack-length	(sel-symbols	(next

)))

=	stack-length	(sel-states	(next))))	The	reduct ion	case	needs	to	know	how	stack-length	is	a	ected	by	push	and	pop-n,	quite

typical	kinds	of	lemmata	to	prove.

Theorem:	stack-length-push

stack-length	(push	(a	,	b))	=	(1	+	stack-length	(b))	(stack-length	(a)	6<	size)	!	(stack-length	(pop-n	(size	,	a))	=	(stack-length

(a)	;	size))

Theorem:	stack-length-pop-n

The	hypotheses	had	to	be	expanded	to	include	assert ions	that	the	stacks	are	indeed	of	stack	type	and	that	size	is	not	zero	{	as

discussed	above,	in	that 	case	the	invariant	does	not	hold.

Theorem:	inv-stack-size-reduce

((next	=	mk-con	gurat ion	(input	,	push	(goto	,	pop-n	(size	,	states)),	push	(lhs	,	pop-n	(size	,	symbols)),	reduce-trees	(lhs	,	size	,

t rees)	,	append	(parse	,	list 	(label)),	append	(list 	(mk-derivat ion-step	(from-bottom	(pop-n	(size	,	symbols)),	mk-prod	(label	,lhs

,	top-n	(size	,	symbols)),	pick-token-names	(input))),	deriv),	f))	^	is-stack	(symbols)	^	is-stack	(states)	^	is-stack	(t rees)	^

(size	6'	0)	^	(stack-length	(t rees)	6<	size)	^	((stack-length	(t rees)	=	stack-length	(symbols))	^	((1	+	stack-length	(symbols))	=

stack-length	(states))))	!	((stack-length	(sel-t rees	(next))	=	stack-length	(sel-symbols	(next)))	^	((1	+	stack-length	(sel-symbols

(next)))	=	stack-length	(sel-states	(next))))

The	proof	of	the	invariant	generates	14	subgoals	that	are	ut terly	incomprehensible,	as	all	of	the	let-forms	are	expanded	and	the

worst 	terms	are	broken	over	190	lines	of	text !	This	is,	however,	a	strong	point 	of	the	prover.	The	size	of	a	term	is	no	hindrance

to	proving	it 	correct 	if	useful	rewrite	rules	can	be	used.

Theorem:	inv-stack-size

((next	=	parsing-step	(mk-con	gurat ion	(input	,	states	,	symbols	,	t rees	,	parse	,	deriv	,	f),

5.3.	THE	INVARIANTS	OF	PARSING

tables	,	grammar))

115

is-stack	(symbols)	is-stack	(states)	is-stack	(t rees)	((stack-length	(t rees)	=	stack-length	(symbols))	^	((1	+	stack-length

(symbols))	=	stack-length	(states))))	!	((stack-length	(sel-t rees	(next))	=	stack-length	(sel-symbols	(next)))	^	((1	+	stack-

length	(sel-symbols	(next)))	=	stack-length	(sel-states	(next))))	Appending	the	leaves	from	the	tree	stack	in	reverse	stack	order

to	the	rest 	of	the	input	gives	the	original	input,	and	this	remains	invariant	throughout	parsing.	This	is	the	case	because	for	every

shift 	act ion	that	is	taken	by	parsing-step,	a	t ree	consist ing	of	just 	one	node	containing	the	shifted	symbol	is	pushed	onto	the	tree

stack.	When	a	reduct ion	takes	place,	n	t rees	are	replaced	by	one	with	a	new	root	and	each	tree	as	a	branch	from	this	root.	The

front ier	of	this	t ree,	however,	is	the	same	as	the	concatenat ion	of	the	front iers	of	the	t rees	part icipat ing	in	the	reduct ion.

^	^	^	^

5.3.2	Leaves

let 	next	=	parsing-step	(c,	tables,	grammar)	in	leaves	(from-bottom	(c.t rees))	_	c.input])	=

leaves	(from-bottom	(next.t rees))	_	next.input]	endlet

For	the	longest	t ime,	this	invariant	seemed	to	be	unprovable.	NQTHM	would	wander	o	into	nether	regions,	either	generalizing

away	the	important	terms	or	doing	irrelevant	induct ions.	The	theorem	was	then	split 	into	a	base	case	theorem	and	an	induct ion

step	theorem,	from	which	the	main	invariant	can	be	deduced.	The	base	case	is	a	simple	rewrite	proof.

Theorem:	leaves-base

append	(leaves	(from-bottom	(emptystack)),	input)	=	input

The	step	case	was	maddening.	It 	split 	as	expected	into	two	cases,	one	for	a	shift 	act ion	and	one	for	a	reduct ion	act ion.	The

shift 	case	was	easy	enough	to	prove	with	a	rewrite	rule	on	leaves,	append,	and	the	leaves	of	a	newly	constructed	tree.

Theorem:	leaves-append

listp	(b)	!	(leaves	(append	(a	,	b))	=	append	(leaves	(a),	leaves	(b)))

Theorem:	leaves-list -t ree=front ier	(is-t ree	(t ree)	^	(t ree	6=	emptytree))

!	(leaves	(list 	(t ree))	=	front ier	('t ree,	t ree))

(token-listp	(input)	^	listp	(input)	^	is-stack	(t rees)	^	(next	=	mk-con	gurat ion	(cdr	(input),	push	(s	,	states),

Theorem:	con	gurat ion-induct ion-step-shift

116

CHAPTER	5.	THE	PARSING	SKELETON

push	(car	(input),	symbols),	push	(mk-tree	(car	(input),	nil)	,	t rees),	parse	,	deriv	,	f)))	(append	(leaves	(from-bottom	(sel-t rees

(next))),	sel-input	(next))	=	append	(leaves	(from-bottom	(trees)),	input))

!

But	the	reduct ion	case	just 	wouldn't 	yield.	I	gave	up	trying	to	obtain	any	of	these	proofs	and	began	writ ing	up	this	thesis	and

trying	to	explain	why	it 	seemed	impossible	to	prove.	There	was	a	lemma	that	just 	wouldn't 	prove,	although	it 	was	\obvious":

Theorem:	leaves-from-bottom-reduce-leaves

(is-stack	(t rees)	!	(leaves	(from-bottom	(reduce-trees	(lhs	,	size	,	t rees)))	=	leaves	(from-bottom	(trees)))

I	then	realized	that	the	prover	was	indeed	correct 	to	not	accept	the	invariant:	the	theorem	does	not	hold	if	size	is	zero	{	in	this

case	the	stack	grows!	My	hand	proof	of	the	theorem	had	missed	this	case	ent irely,	as	well	as	the	case	where	size	is	larger	than

the	current	stack	size.	But	even	with	a	hypothesis	about	size,	NQTHM	st ill	wouldn't 	assent	to	the	theorem.	A	successful

sequence	of	rewrites	was	eventually	found	using	PC-NQTHM.	First 	the	relat ionship	between	the	front ier	of	a	t ree	and	leaves

had	to	be	explained.

Theorem:	front ier-leaf-rewrite

front ier	('t ree,	mk-tree	(a	,	b))	=	if	is-leaf	(mk-tree	(a	,	b))	then	list 	(a)	else	front ier	('branches,	b)	endif	listp	(l)

Theorem:	front ier-t ree-is-leaves

!	(front ier	('t ree,	mk-tree	(x	,	l))	=	leaves	(l))

Interest ingly	enough,	leaves-append	in	the	other	direct ion	was	also	needed.	It 	can	be	proven	and	disabled	so	that	it 	doesn't

cause	a	loop	in	the	rewrit ing.	Proving	the	theorem	as	an	equivalence	will	not 	help	the	proof.

Theorem:	append-leaves

listp	(b)	!	(append	(leaves	(a),	leaves	(b))	=	leaves	(append	(a	,	b)))	Then	a	very	bad	rewrite	rule	about	pop-n	and	pop	was

needed	that	also	must	be	disabled	and	only	applied	once	by	hand	at 	a	part icular	point 	in	the	proof	{	any	automat ic	use	of	the

lemma	by	the	prover	begins	an	in	nite	rewrite	chain5.

Theorem:	pop-n-sub1-pop

(is-stack	(t rees)	^	(size	6'	0)	^	(stack-length	(t rees)	6<	size))	!	(pop-n	(size	;	1,	pop	(t rees))	=	pop-n	(size	,	t rees))

Now	an	interest ing,	rather	complicated	rewrite	rule	is	used	that	moves	the	from-bottom	funct ion	applicat ion	out	so	that	the	term

on	the	inside	collapses.

Of	course,	it 's	not	really	in	nite,	because	it 	terminates	when	the	rewrite	stack	over	ows.	Inspect ing	the	path	shows	that	the	only

rule	used	in	the	last 	thousand	rewrites	or	so	was	this	one.

5

5.3.	THE	INVARIANTS	OF	PARSING

Theorem:	append-from-bottom-pop-n

117

is-stack	(s)	!	(append	(from-bottom	(pop-n	(n	,	s)),	top-n	(n	,	s))	=	from-bottom	(s))	And	now	the	needed	rewrite	rule	can	be

proven,	but	only	with	a	lot 	of	encouragement	in	PC-NQTHM.	Theorem:	leaves-from-bottom-reduce-trees6	(is-stack	(t rees)	^

(size	6'	0)	^	(stack-length	(t rees)	6<	size))	!	(leaves	(from-bottom	(reduce-trees	(lhs	,	size	,	t rees)))	=	leaves	(from-bottom

(trees)))	The	list 	of	hints	needed	looks	int imidat ing,	but	is	really	quite	simple.

(INSTRUCTIONS	PROMOTE	(DIVE	1	1	1)	X	UP	(REWRITE	FROM-BOTTOM-PUSH)	UP	(REWRITE	LEAVES-APPEND)

(DIVE	2)	(REWRITE	LEAVES-LIST-TREE=FRONTIER)	(CHANGE-GOAL	(MAIN	.	1)	T)	PROVE	TOP	(DIVE	1	1	1	1)	X	TOP

(DIVE	1	2	2	2)	(CLAIM	(LISTP	(TOP-N	SIZE	TREES)))	TOP	(DIVE	1	2)	(REWRITE	FRONTIER-TREE-IS-LEAVES)	UP

(REWRITE	APPEND-LEAVES)	(DIVE	1	1	1)	(REWRITE	POP-N-SUB1-POP)	TOP	(DIVE	1	1)	(REWRITE	APPEND-FROM-

BOTTOM-POP-N)	TOP	PROVE)

This	corresponds	to	the	following	rewrite	proof	with	f-b	represent ing	from-bottom,	app	represent ing	append,	n	represent ing	size,

and	tr	represent ing	trees	out	of	space	considerat ions:

leaves(f-b(reduce-trees(lhs,n,t r)))	leaves(f-b(push(mk-tree(lhs,top-n(n,t r)),pop-n(n,t r))))	leaves(app(f-b(pop-n(n,t r)),list (mk-

tree(lhs,top-n(n,t r)))))	app(leaves(f-b(pop-n(n,t r))),leaves(list (mk-tree(lhs,top-n(n,t r)))))	app(leaves(f-b(pop-

n(n,t r))),front ier('t ree,mk-tree(lhs,top-n(n,t r))))	app(leaves(f-b(pop-n(n,t r))),leaves(top-n(n,t r)))	leaves(app(f-b(pop-n(n,t r)),top-

n(n,t r)))	leaves(f-b(tr))	=	=	=	=	=	=	=

6	This	proof	was	shown	to	Alan	Bundy,	who	works	on	rippling	strategies	in	automat ic	proof.	He,	too,	found	the	proof	strange,

and	o	ered	an	improvement,	combining	the	rewrite	rules	leaves-list -t ree=front ier	and	front ier-t ree-is-leaves	into	one	rule.	After

working	with	the	theorem	for	a	while	he	found	a	proof	using	the	same	rules	using	di	erence	matching	(a	technique	not	used	by

NQTHM),	but	the	proof	needs	to	select 	the	append-from-bottom-pop-n	rule	to	start 	with,	a	non-obvious	choice.	All	at tempts	to

coax	NQTHM	with	hints	to	see	the	rewrit ing	proof	based	on	either	Alan's	or	my	proof	fail	{	it 	wants	to	induct	because	it 	doesn't

see	anything	promising	to	rewrite.	The	proof	script 	found	at 	the	URL	given	on	page	3	uses	the	better	formulat ion	of	the

leaves/front ier	lemma	and	thus	hat	a	bit 	shorter	hint 	list 	than	the	one	given	below.

118

CHAPTER	5.	THE	PARSING	SKELETON

With	this	theorem,	the	reduct ion	case	can	now	be	proven.	Then	just 	a	few	more	minor	theorems	are	needed	before	the	leaves

step	invariant	can	be	proven.

Theorem:	con	gurat ion-induct ion-step-reduce

(token-listp	(input)	^	listp	(input)	^	is-stack	(t rees)	^	(size	6'	0)	^	(stack-length	(t rees)	6<	size)	^	(next	=	mk-con	gurat ion	(input

,	push	(s	,	states),	push	(car	(input),	symbols),	reduce-trees	(lhs	,	size	,	t rees),	parse	,	deriv	,	f)))	!	(append	(leaves	(from-

bottom	(sel-t rees	(next))),	sel-input	(next))	=	append	(leaves	(from-bottom	(t rees)),	input))	front ier	('branches,	q)	=	leaves

(q)

Theorem:	front ier-branches-is-leaves	Theorem:	leaves-from-bottom-pop-n-trees

(is-stack	(t rees)	^	(size	6'	0)	^	(stack-length	(t rees)	6<	size))	!	(append	(leaves	(from-bottom	(pop-n	(size	,	t rees)))	,	front ier

('branches,	top-n	(size	,	t rees)))	=	leaves	(from-bottom	(trees)))

Theorem:	append-eliminat ion

(append	(x	,	y)	=	a)	!	(append	(x	,	append	(y	,	z))	=	append	(a	,	z))	(next	=	parsing-step	(mk-con	gurat ion	(input	,	states	,

symbols	,	t rees	,	parse	,	deriv	,	f),	tables	,	grammar))	!	(append	(leaves	(from-bottom	(sel-t rees	(next))),	sel-input	(next))	=

append	(leaves	(from-bottom	(trees)),	input))

Theorem:	great-parsing-step-invariant

Right	Sentent ial	Form

The	concatenat ion	of	the	symbol	stack,	in	order	from	the	bottom	and	the	rest 	of	the	input	is	a	right 	sentent ial	form	in	the

grammar.	This	can	be	seen	by	reading	backwards	in	a	Mayer-like	derivat ion:	if	the	target	of	a	derivat ion	step	is	a	right 	sentent ial

form,	then	the	source	is	as	well	(nothing	changes	on	the	right 	part).	And	if	target(i)	=	source(i+1)	but	sel-right 	(i)	6=	sel-right 	(

i+1)	and	i+1	is	a	right-sentent ial	form,	then	i	is	a	right 	sentent ial	form	as	well,	as	sel-lhs	(sel-prod	(i+1))	must	be	the	rightmost

non-terminal	in	sel-left 	(i)_	sel-rhs	(sel-prod	(i)).	In	the	init ial	con	gurat ion,	there	is	no	derivat ion	step	and	the	symbol	stack	is

empty.	When	the	rst 	derivat ion	step	is	constructed,	the	left 	part 	is	the	symbol	stack	after	removing	size	elements	but	before

pushing	the	left -hand	side	of	the	reduced	product ion	onto	it ,	and	the	right 	part 	is	the	rest 	of	the	input.	This	then	is	a	right

sentent ial	form.	This	means	that	if	a	con	gurat ion	contains	a	right 	sentent ial	form,	then	applying	the	funct ion	parsing-step	to	the

con	gurat ion	will	result 	in	a	con	gurat ion	that	also	contains	a	right 	sentent ial	form.

5.3.	THE	INVARIANTS	OF	PARSING

is-wf-Grammar	(grammar)	^	is-right-sentent ial-form	(from-bottom	(conf.symbols)	_	conf.input])	=)	let 	next	=	parsing-step	(conf,

tables,	grammar)	in	is-right-sentent ial-form	(from-bottom	(next.symbols)	_	next.input])	endlet

119

The	derivat ion	sect ion	discussed	the	problems	involved	in	expressing	the	property	of	a	right 	sentent ial	form.	But	there	is	perhaps

a	way	to	prove	something	similar.	It 	can	be	shown	that	the	concatenat ion	of	the	symbols	stack	from	the	bottom	and	the	rest 	of

the	input	is	the	same	as	the	current	source	in	the	derivat ion	being	constructed.	When	a	derivat ion	has	been	constructed,	it 	can

be	determined	if	it 	is	a	right 	derivat ion.	By	de	nit ion,	the	sources	and	targets	of	a	right 	derivat ion	are	right 	sentent ial	forms.	The

induct ion	step	is	easy	but	there	are	problems	associated	with	the	base	case.	In	the	init ial	con	gurat ion	the	derivat ion	is	empty	{

only	after	the	rst 	reduct ion	has	taken	place	is	a	derivat ion	step	constructed,	and	then	the	target	of	the	derivat ion	step	is	the

concatenat ion	of	the	(empty)	symbol	stack	and	the	input!	A	way	out	could	be	to	include	a	pseudo-derivat ion	step	that	has	no

product ion	in	it ,	but 	that 	would	invalidate	the	test 	for	derivat ion	in	a	grammar,	as	this	would	not	be	a	product ion	in	the	grammar.

So	here,	only	the	proof	of	the	induct ion	step	is	o	ered.	The	shift 	case	is	t rivial	{	nothing	changes	in	the	derivat ion,	and	pushing	the

next	character	on	the	symbol	stack	has	no	e	ect .	During	the	proof	of	this	case,	however,	it 	was	discovered	that	some	symbols

were	tokens	and	some	were	left 	hand	sides	of	product ions	(and	not	tokens),	and	thus	the	theorem	did	not	hold.	The	token

names	have	to	be	picked	out	of	the	sequence	using	the	pick-token-names	funct ion.	Addit ionally,	a	lemma	on	car	and	append

was	needed.	Theorem:	car-append-list 	car	(append	(list 	(x),	y))	=	x	Theorem:	inv-rt -sent-1-shift 	((next	=	mk-con	gurat ion	(cdr

(input),	push	(s	,	states),	push	(token-name	(car	(input)),	symbols),	push	(mk-tree	(car	(input),	nil),	t rees),	parse	,	deriv	,	f))	^

listp	(input)	^	token-listp	(input)	^	(append	(from-bottom	(symbols),	pick-token-names	(input))	=	step-source	(car	(deriv))))	!

(append	(from-bottom	(sel-symbols	(next)),	pick-token-names	(sel-input	(next)))	=	step-source	(car	(sel-deriv	(next))))	The

reduct ion	case	needed	a	key	lemma	about	the	distribut ivity	of	append	through	the	combinat ion	of	from-bottom	and	push.

Theorem:	append-from-bottom-push	(is-stack	(symbols)	^	(append	(from-bottom	(symbols),	pick-token-names	(input))	=

append	(d	,	cons	(x	,	w))))	!	(append	(from-bottom	(push	(lhs	,	pop-n	(size	,	symbols))),	pick-token-names	(input))	=	append

(from-bottom	(pop-n	(size	,	symbols)),	cons	(lhs	,	pick-token-names	(input))))

120

Theorem:	inv-rt -sent-1-reduce

CHAPTER	5.	THE	PARSING	SKELETON

((next	=	mk-con	gurat ion	(input	,	push	(goto	,	pop-n	(size	,	states)),	push	(lhs	,	pop-n	(size	,	symbols)),	reduce-trees	(lhs	,	size	,

t rees),	append	(parse	,	list 	(label)),	append	(list 	(mk-derivat ion-step	(from-bottom	(pop-n	(size	,	symbols)),	mk-prod	(label	,	lhs

,	top-n	(size	,	symbols)),	pick-token-names	(input))),	deriv),	f))	^	is-stack	(symbols)	^	(append	(from-bottom	(symbols),	pick-

token-names	(input))	=	step-source	(car	(deriv))))	!	(append	(from-bottom	(sel-symbols	(next)),	pick-token-names	(sel-input

(next)))	=	step-source	(car	(sel-deriv	(next))))

The	theorem	is	of	course	true	when	an	error	is	signalled,	and	so	the	invariant	can	easily	be	shown:

Theorem:	inv-rt -sent-1

((next	=	parsing-step	(mk-con	gurat ion	(input	,	states	,	symbols	,	t rees	,	parse	,	deriv	,	f),	tables	,	grammar))	^	is-stack	(symbols

)	^	token-listp	(input)	^	listp	(input)	^	(append	(from-bottom	(symbols),	pick-token-names	(input))	=	step-source	(car	(deriv))))	!

(append	(from-bottom	(sel-symbols	(next)),	pick-token-names	(sel-input	(next)))	=	step-source	(car	(sel-deriv	(next))))

5.3.3	Number	of	Reduct ions

The	number	of	non-leaf	nodes	in	the	tree	stack	is	equal	to	the	length	of	the	reduct ion	string.	length	(c.parse)	=	node-count

(c.t rees)	Two	auxiliary	lemmata	about	node-count	interact ions	and	one	about	length	and	append	must	be	proven.

Theorem:	length-append

length	(append	(a	,	b))	=	(length	(a)	+	length	(b))	node-count	('branches,	append	(a	,	b))	=	(node-count	('branches,	a)	+	node-

count	('branches,	b))	(node-count	('branches,	top-n	(size	,	t rees))

Theorem:	node-count-append

Theorem:	node-count-top-n-pop-n

5.3.	THE	INVARIANTS	OF	PARSING

+	node-count	('branches,	from-bottom	(pop-n	(size	,	t rees))))	=	node-count	('branches,	from-bottom	(trees))

121

The	shift 	case	proves	without	further	problems.	Theorem:	inv-reduct ions-shift 	((next	=	mk-con	gurat ion	(cdr	(input),	push	(s	,

states),	push	(token-name	(car	(input)),	symbols),	push	(mk-tree	(car	(input),	nil),	t rees),	parse	,	deriv	,	f))	^	(node-count

('branches,	from-bottom	(trees))	=	length	(parse)))	!	(node-count	('branches,	from-bottom	(sel-t rees	(next)))	=	length	(sel-

parse	(next)))	In	t rying	to	prove	the	reduct ion	step,	a	slight 	problem	in	the	de	nit ion	of	node-count	turned	up	{	the	empty	t ree	had

node	count	0,	as	did	the	singleton	tree.	But	a	hypothesis	can	be	added	to	the	step	proof	that 	the	t ree	stack	is	not	empty,	since

the	main	invariant	will	easily	be	able	to	relieve	this	hypothesis	during	the	proof.	Theorem:	node-count-reduce-trees	((size	6'	0)	^

(stack-length	(t rees)	6<	size)	^	(t rees	6=	emptystack))	!	(node-count	('branches,	from-bottom	(reduce-trees	(lhs	,	size	,	t rees

)))	=	(1	+	node-count	('branches,	from-bottom	(trees))))

Theorem:	inv-reduct ions-reduce

((next	=	mk-con	gurat ion	(input	,	push	(goto	,	pop-n	(size	,	states)),	push	(lhs	,	pop-n	(size	,	symbols)),	reduce-trees	(lhs	,	size	,

t rees),	append	(parse	,	list 	(label)),	append	(list 	(mk-derivat ion-step	(from-bottom	(pop-n	(size	,	symbols)),	mk-prod	(label	,	lhs

,	top-n	(size	,	symbols)),	pick-token-names	(input))),	deriv),	f))	^	(size	6'	0)	^	(stack-length	(t rees)	6<	size)	^	(node-count

('branches,	from-bottom	(trees))	=	length	(parse)))	!	(node-count	('branches,	from-bottom	(sel-t rees	(next)))	=	length	(sel-parse

(next)))

For	the	main	invariant	proof	the	prover	must	be	forced	to	use	an	induct ion	scheme	as	it 	chooses	an	induct ion	over	states,

instead	of	on	the	length	of	the	t ree	stack.	At	one	point 	the	prover	chooses	to	use	the	axiom	is-wf-act ion-act ion-tab,	which

states	as	an	axiom	that	using	act ion-lookup	will	only	result 	in	a	proper	act ion,	i.e.	a	shift ,	a	reduce,	or	an	error.	Since	the	proof

will	go	through	without	this	axiom,	the	axiom	can	be	explicit ly	disabled	before	submit t ing	this	event.	Theorem:	inv-reduct ions

((next	=	parsing-step	(mk-con	gurat ion	(input	,	states	,symbols	,	t rees	,parse	,	deriv	,	f),	tables	,	grammar))	^	(t rees	6=

emptytree)	^	(node-count	('branches,	from-bottom	(trees))	=	length	(parse)))	!	(node-count	('branches,	from-bottom	(sel-t rees

(next)))	=	length	(sel-parse	(next)))

122

CHAPTER	5.	THE	PARSING	SKELETON

Roots

The	roots	of	the	reverse	order	of	the	forest 	on	the	tree	stack	are	the	same	as	the	reverse	order	of	the	symbol	stack.	roots

(from-bottom	(c.t rees))	=	from-bottom	(c.symbol)	=)	let 	next	=	parsing-step	(c,	tables,	prods)	in	roots	(from-bottom

(next.t rees))	=	from-bottom	(next.symbol)	endlet 	Proving	the	shift 	case	seemed	easy,	just 	a	few	lemmata	about	the	interact ion

of	roots	with	funct ions	were	needed.	A	major	aw	in	the	rst 	statement	of	the	invariant	was	uncovered.	It 	again	had	to	do	with	the

token	names:	When	a	shift 	takes	place,	a	t ree	with	a	token	as	the	node	is	pushed	on	the	tree	stack.	When	a	reduct ion	takes

place,	the	node	is	no	longer	a	token	but	a	left 	hand	side	of	a	product ion.	After	applying	pick-token-name	to	the	result 	of	nodes,	a

further	problem	was	found:	nodes	will	only	work	on	a	stack	of	t rees.	If	there	is	anything	on	the	stack	that	is	not	a	t ree,	the

theorem	does	not	hold.	So	the	funct ion	roots	had	to	be	adjusted	to	ignore	all	non-tree	elements	of	the	stack.	Now	the	invariant

could	be	proven.

Theorem:	roots-mk-tree

roots	(list 	(mk-tree	(a	,	b)))	=	list 	(a)	Theorem:	roots-append	listp	(b)	!	(roots	(append	(a	,	b))	=	append	(roots	(a),	roots	(b)))

Theorem:	pick-token-names-append	pick-token-names	(append	(a	,	b))	=	append	(pick-token-names	(a),	pick-token-names	(b

))	Theorem:	pick-token-names-list 	tokenp	(a)	!	(pick-token-names	(list 	(a))	=	list 	(token-name	(a)))	Theorem:	inv-roots-shift

((next	=	mk-con	gurat ion	(cdr	(input),	push	(s	,	states),	push	(token-name	(car	(input)),	symbols),	push	(mk-tree	(car	(input),

nil),	t rees),	parse	,	deriv	,	f))	^	is-stack	(symbols)	^	token-listp	(input)	^	listp	(input)	^	is-stack	(t rees)	^	(pick-token-names

(roots	(from-bottom	(trees)))	=	from-bottom	(symbols)))	!	(pick-token-names	(roots	(from-bottom	(sel-t rees	(next))))	=	from-

bottom	(sel-symbols	(next)))	For	the	reduct ion	case	the	assurance	that	the	t ree	stack	is	indeed	a	stack	of	t rees	must	be

included	in	the	hypothesis	{	that 	should	be	easy	to	prove.	The	prover	was	stuck	on	a	case	that	is	indeed	troublesome:	if	the	left

hand	side	of	a	product ion	happens	to	be	a	token,	then	the	theorem	does	indeed	not	hold,	as	picking	the	token	name	would	result

in	a	di	erent	string.	This	cannot	happen	since	a	product ion	can	only	have	a	non-terminal	as	a	left -hand	side,	not	a	token.	But	this

seems	impossible	to	tell	NQTHM	{	although	it 	is	just 	a	simple	case,	easily	excluded	if	a	prover	has	type	checking	available.	The

proof	of	this	invariant	had	to	be	abandoned	because	of	t ime	considerat ions	and	is	left 	stated	as	a	conjecture.

5.3.	THE	INVARIANTS	OF	PARSING

Conjecture:	inv-roots-reduce

123

((next	=	mk-con	gurat ion	(input	,	push	(goto	,	pop-n	(size	,	states)),	push	(lhs	,	pop-n	(size	,	symbols)),	reduce-trees	(lhs	,	size	,

t rees),	append	(parse	,	list 	(label)),	append	(list 	(mk-derivat ion-step	(from-bottom	(pop-n	(size	,	symbols)),	mk-prod	(label	,	lhs

,	top-n	(size	,	symbols)),	pick-token-names	(input))),	deriv),	f))	^	is-stack	(symbols)	^	token-listp	(input)	^	(stack-length	(t rees)

6<	size)	^	(size	6'	0)	^	listp	(input)	^	is-stack	(t rees)	^	(pick-token-names	(roots	(from-bottom	(trees)))	=	from-bottom	(symbols

)))	!	(pick-token-names	(roots	(from-bottom	(sel-t rees	(next))))	=	from-bottom	(sel-symbols	(next)))

5.3.4	Nodes

The	set	of	all	non-leaf	nodes	in	the	tree	stack	are	labelled	with	left -hand	sides	from	some	product ion	from	the	grammar,	and

they	have	the	appropriate	number	of	labelled	children	as	the	corresponding	right-hand	sides.

8	n	2	nodes	(c.t rees)	9	p	2	prods	root(n)	p.lhs	^	roots	(children	(n))	=	p.rhs

This	invariant	cannot	be	proven	without	knowledge	of	how	the	table	was	constructed	from	the	grammar.	The	table	encodes	into

the	reduct ion	act ion	the	needed	informat ion	about	the	left 	hand	side,	the	product ion	number,	and	the	size	of	the	right 	hand	side.

It 	would	be	conceivable	to	go	back	and	change	the	representat ion	of	the	table	to	include	just 	the	label	for	the	product ion,	and	at

this	point 	to	select 	that 	product ion	from	the	grammar	and	determine	the	left 	hand	side	and	the	size	of	the	right 	hand	side	from

that.	That	would	enable	this	invariant	proof	to	be	conducted,	and	would	more	closely	t ie	in	the	grammar	to	the	parsing	process

(at 	the	moment	it 	is	irrelevant,	all	informat ion	from	the	grammar	must	come	from	the	table).	Perhaps	a	theorem	that	concerns

both	the	parsing	table	and	a	parsing	act ion	could	be	shown	in	order	to	demonstrate	that	the	main	theorem	stated	below	is

correct .	It 	concerns	the	condit ion	of	the	symbol	stack	when	a	reduct ion	act ion	is	called	for.	If	the	table	is	well-formed,	then	the

right	hand	side	of	the	product ion	which	is	to	be	reduced	will	be	a	su	x	of	the	symbol	stack.	If	this	were	not	the	case,	then	a	t ree

represent ing	a	false	product ion	would	be	put	on	the	tree	stack	and	the	derivat ion	would	contain	it 	as	well.	This	would	cause	the

predicate

124

is-right-derivat ion-in

CHAPTER	5.	THE	PARSING	SKELETON

to	return	F.	It 	is	completely	unclear	how	such	a	theorem	could	be	stated	in	the	logic	of	the	prover.	Another	possibility	would	be	to

include	informat ion	in	the	table	lookup	on	the	expected	right 	hand	side	of	the	product ion,	and	the	parsing	skeleton	could	check

that	it 	is	a	su	x	of	the	symbol	stack	before	doing	a	reduct ion.	But	in	order	to	do	any	of	this	I	would	have	to	go	back	and

completely	redo	all	proofs	done	up	unt il	now.	So	this	invariant	is	left 	unproven.

5.3.5	Main	Theorem

The	main	theorem	might	seem	rather	t rivial	after	the	invariants	have	been	proven:	if	the	parsing	skeleton	terminates	with	accept,

a	right 	parse	for	the	input	string	has	been	found	because	a	right 	derivat ion	has	been	constructed.	Such	a	derivat ion	consists	only

of	right 	sentent ial	forms,	and	when	the	product ion	chain	is	reversed,	one	obtains	exact ly	the	parse	string.	In	addit ion,	the	parse

tree	front ier	is	the	same	as	the	input	token	sequence.	A	parse	string	corresponds	to	a	derivat ion	when	its	reverse	contains	the

labels	of	the	product ions	of	the	derivat ions	in	the	same	order.

Definit ion:

corresponds	(parse	,	deriv	,	grammar)	=	if	parse	'	nil	then	deriv	'	nil	else	prod-nr	(grammar.product ions,	car	(parse))	=	(car

(deriv)).prod	^	corresponds	(cdr	(parse),	cdr	(derive),	grammar)	endif	The	main	theorem	states	that	the	parsing	process	always

produces	a	right 	derivat ion	from	the	axiom	to	the	input	sequence	which	corresponds	to	the	parse	string,	and	the	leaves	of	the

parse	tree	retrieve	to	the	original	sequence.	Since	it 	has	not	been	proven,	it 	is	noted	here	as	a	conjecture

Conjecture:	main-theorem

input	2

!

let 	conf	be	parser	(input	,	tab	,	grammar)	in

grammar.terminals

accept ing	(conf	,	grammar.axiom)	!	is-right-derivat ion-in	(conf.deriv	,	G)	^	source	(conf.deriv)	=	prod-nr	(grammar.product ions	,

grammar.axiom).lhs	^	target	(conf.deriv)	=	input	^	corresponds	(reverse	(conf.parse),	conf.deriv,	grammar)	^	leaves	(conf.t rees)

=	input	endlet

The	proof	would	proceed	by	induct ion	on	the	number	of	parsing	steps,	showing	that	the	init ial	con	gurat ion	is	a	right 	derivat ion

and	that	applying	parsing-step	preserves	rightderivat ion-ness.	If	the	parser	terminates	successfully,	the	source	of	the	derivat ion

in	the	congurat ion	will	be	the	left 	hand	side	of	the	axiom.	If	the	derivat ion	is	constructed	properly	by	parsing-step,	then	the	result

is	indeed	a	right 	derivat ion.	This	concludes	the	parsing	skeleton	proofs.	A	discussion	some	of	the	problem	points	can	be	found	in

Sect ion	7.2.3	of	the	Conclusions	chapter.

Chapter	6

The	Parser	Table	Generator

Proving	an	LR	parser	table	generator	correct 	with	a	veri	cat ion	system	is	a	daunt ing	task.	Despite	the	wealth	of	mathematical

background	that	is	available	for	assistance,	it 	is	not	easy	to	formalize	construct ively	what	takes	place.	Many	of	the	proofs	in	the

literature	rely	heavily	on	explicit 	or	even	hidden	existent ial	quant i	cat ion.	In	addit ion,	many	of	the	di	erent	authors	employ	di	erent

notat ions	that	tend	to	be	not	quite	compat ible	with	one	another,	thus	making	the	task	that	much	more	di	cult .	This	chapter

discusses	the	process	of	creat ing	a	parsing	table	for	a	shift -reduce	parser	in	a	veri	able	manner.	The	process	of	generat ing	a

table	is	described	in	Sect ion	6.2	and	in	Sect ion	6.4	some	theorems	about	correct 	table	generat ion	are	stated.	However,

because	of	the	complexity	of	the	funct ions	and	t ime	constraints	no	proofs	were	completed.	Sect ion	6.3	demonstrates	that	it 	is

possible	to	implement	the	algorithms	in	the	restricted	language	of	the	Boyer-Moore	logic.	A	parsing	table	for	PLR	0	was

generated	by	this	implementat ion	and	is	available	at 	the	URL	given	in	Sect ion	1.2.

6.1	LR	Parsing	methods

There	are	quite	a	number	of	methods	for	generat ing	a	table	for	driving	a	parser	which	works	bottom-up	producing	a	right

derivat ion.	This	sect ion	will	brie	y	discuss	a	few	of	them.	This	construct ion	method	works	for	grammars	which	have	the	LR(0)

property.	That	is,	they	are	parseable	from	left 	to	right 	with	no	lookahead.	A	canonical	collect ion	of	items,	constructed	from	the

product ions,	comprises	a	nondeterminist ic	nite	state	automaton	that	recognizes	viable	pre	xes	for	deciding	when	to	reduce	a

part icular	product ion.	The	method	of	Rabin/Scott 	can	be	used	to	convert 	this	to	a	determinist ic	automaton.	Unfortunately,	many

interest ing	programming	language	constructs	are	not	expressible	in	such	a	grammar,	i.e.	they	provoke	reduce-reduce	or	shift -

reduce	con	icts.

Canonical	LR(0)	parser

Canonical	LR(k)	parser

Extending	this	concept	with	a	k-character	lookahead	would	produce	LR(k)	parsing	tables.	As	described	in	Langmaack	Lan71],

the	stack	classes	of	order	k	can	be	de	ned	and	tables	derived	from	this.	However	by	coding	the	complete	lookahead	informat ion

into	the	states,	an	exponent ial	explosion	in	the	number	of	states	needed	for	such	a	table	takes	place.	Some	methods	have	been

described	Pag77,	HW90]	for	compact ing	the	tables	or	generat ing	them	more	e	cient ly.	But	this	method	remains	impract ical.

Simple	LR(k)	parser

DeRemer	described	in	DeR71]	a	simple	method	for	recognizing	a	subset	of	LR(k)	gram125

126

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

mars	based	on	the	canonical	LR(0)	parser	for	the	grammar.	After	generat ing	it ,	an	at tempt	is	made	to	resolve	the	con	icts	by

calculat ing	a	simple	follow	set.	This	method	works	well	and	it 	is	easier	to	formulate	correctness	predicates	about	it 	than	for	the

other	methods.	But	it 	does	not	su	ce	for	a	number	of	important	programming	language	constructs	because	it 	does	not	have

enough	informat ion	about	the	left 	context 	of	the	current	con	gurat ion	to	resolve	the	con	icts	properly.

Lookahead	LR(k)	parser

This	last 	major	method	is	often	used	in	parser	generators	such	as	yacc.	States	with	a	common	kernel	are	di	erent iated	by	a	k-

lookahead.	This	gives	enough	context 	informat ion	so	that	almost	all	interest ing	programming	language	constructs	can	be

parsed.	It 	will,	however,	only	recognize	a	subset	of	the	LR(k)	languages,	although	the	example	grammars	that	are	LR(k)	but	not

LALR(k)	for	any	k	are	rather	contrived.	The	decision	to	use	SLR(1)	was	based	most ly	on	the	possibility	of	breaking	the	method

down	into	three	major	steps.	One	of	them	is	the	conversion	from	nondeterminist ic	to	determinist ic	automata,	which	was	proven

correct 	in	Chapter	3.	Being	able	to	\reuse"	a	proof	would	great ly	facilitate	the	proof	e	ort .

6.2	Construct ing	a	Parsing	Table

This	chapter	discusses	the	process	of	construct ing	an	SLR(1)	parsing	table	and	shows	that	with	the	help	of	the	NFSA	DFSA

proof	discussed	above,	it 	would	be	possible	to	mechanize	a	proof	of	correctness	for	such	a	table	construct ion	algorithm.	Figure

6.1	depicts	the	process	of	construct ing	an	SLR(1)	parsing	table	from	a	grammar.	The	construct ion	revolves	around	the	idea	of	a

canonical	collect ion,	which	is	used	in	construct ing	a	nondeterminist ic	nite	state	automaton	for	recognizing	viable	pre	xes	for

sentent ial	forms	of	the	grammar.	Using	the	method	described	in	Rabin/Scott 	RS59],	this	automaton	can	be	transformed	to	an

equivalent,	determinist ic	one.	From	this	determinist ic	automaton	a	parsing	table	can	be	extracted	that	can	be	used	by	the

parsing	skeleton	described	in	Chapter	5.	Grammar	Representat ion	NFSA	DFSA	SLR(1)	Parsing	Table	Figure	6.1:	Creat ing	a

Parsing	Table	from	a	Grammar

?	?	?

Create	NFSA	for	LR(0)	NFSA!DFSA	Extract 	Table	with	Follow

6.2.	CONSTRUCTING	A	PARSING	TABLE

127

6.2.1	Canonical	Collect ion

The	construct ion	of	the	canonical	collect ion	(also	known	as	the	canonical	LR(0)	automaton)	is	the	basis	of	SLR(1)	table

construct ion.	Hopcroft 	and	Ullmann	HU79]	describe	the	process	in	some	detail.	This	exposit ion	is	based	on	their	work,	and	is

concerned	rst 	with	sentent ial	forms	and	viable	pre	xes.

De	nit ion	11	A	handle	of	a	product ion	in	a	grammar	is	its	right 	hand	side.	A	handle	for

a	parser	stack	is	the	top	port ion	of	the	symbol	stack,	which	corresponds	to	such	a	right 	hand	side.	is	at 	most	the	rightmost

symbol	of	the	handle	of	.

De	nit ion	12	A	viable	pre	x	of	a	right 	sentent ial	form	is	any	pre	x	of	whose	last 	symbol	De	nit ion	13	An	item	for	a	product ion	A	!

represents	the	part ially	recognized	product ion,	and	is	denoted	by	a	meta-symbol,	the	dot,	between	the	recognized	port ion	and

the	notyet-recognized	port ion,	for	example	A	!].

For	each	product ion	in	the	grammar	the	dot	may	be	placed	between	any	two	symbols,	or	may	be	the	rst 	or	last 	symbol.	Thus

there	are	j	rhs	j	+	1	items	per	product ion	in	a	grammar.

De	nit ion	14	An	item	A	!

and	=	.

]	is	valid	for	a	viable	pre	x	when	a	right 	derivat ion	exists

S	=)	Aw=)

w

Knowing	which	items	are	valid	for	a	viable	pre	x	enables	one	to	go	backwards	to	determine	a	right 	derivat ion.	An	item	is	called

complete,	when	the	dot	is	the	rightmost	symbol.	When	A!]	is	a	complete	valid	item	for	a	right 	sentent ial	form	,	then	it 	appears

that	the	last 	derivat ion	step	used	the	product ion	A	=)	,	and	thus	the	last 	right 	sentent ial	form	in	the	right 	derivat ion	of	w	was	Aw.

Of	course,	it 	is	only	a	conjecture	that	it 	was	the	last 	reduct ion.	It 	is	possible	for	there	to	be	more	than	one	valid	complete	item	for

a	valid	pre	x,	which	is	the	case	when	there	are	reduce-reduce	con	icts,	or	when	there	exists	a	pre	x	of	w	that	belongs	to	a	handle

of	,	which	is	called	a	shift -reduce	con	ict .	But	if	all	are	in	fact 	the	only	reduct ions	and	no	symbols	of	w	are	pre	xes	of	handles,	then

the	grammar	is	said	to	be	LR(0).	The	LR(0)	subclass	of	determinist ic	context-free	languages	contains	all	pre	x-free	languages.

That	means	that	for	all	w	2	L(G),	there	does	not	exist 	a	v	2	L(G)	such	that	v	is	a	proper	pre	x	of	w.	The	items	which	are	valid	for

the	viable	pre	xes	of	the	language	must	be	determined.	Since	the	LR(0)	languages	are	pre	x-free,	the	pre	xes	of	right 	sentent ial

forms	will	uniquely	determine	the	next	act ion	of	the	parser.	The	viable	pre	xes	for	LR(0)	languages	can	be	described	by	regular

languages,	and	thus	a	nite	state	automaton	can	be	constructed	for	the	recognit ion	of	the	viable	pre	xes.	First 	a	nondeterminist ic

nite	state	automaton	is	constructed	with	all	the	items	for	all	the	product ions	in	a	grammar	comprising	the	set	of	states.	The

NFSA	for	a	grammar	G	=	(N,	T,	P,	S)	is	de	ned	as	follows.	Let	M	=	(Q,	N	T,	,	q0	,	Q)	be	a	NFSA	with	Q	the	set	of	items	derived

from	P	and	the	state	q0,	which	is	not	an	item.	The	state	t ransit ion	funct ion	is	constructed	as	follows:	1.	(q0,)	=	f	S	!]jS!	2Pg	2.	(

A	!	B],)	=	f	B	!]	j	B	!	2	P	g

128	3.	(A	!

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

X],	X)	=	f	A	!	X]g

The	rst 	t ransit ions	are	those	from	the	start 	state	to	all	pre-dotted	items	containing	the	start 	symbol	on	the	left 	hand	side.	The

second	transit ions	are	from	an	item	with	the	dot	just 	in	front	of	a	non-terminal	to	all	items	for	which	that	non-terminal	is	pre-

dotted.	The	last 	t ransit ion	is	for	moving	over	the	next	input	symbol,	for	X	2	N	T.	Hopcroft 	and	Ullman	HU79]	prove	that	a	NFSA

constructed	in	this	manner	has	the	property	that	(q0,)	contains	the	item	A	!]	if	and	only	if	A	!]	is	valid	for	.	As	an	example	the

well-known	grammar	Gexpression	will	be	used.	Gexpression	=	(fE,	T,	F,	Sg,	fPLUS,	TIMES,	OPEN,	CLOSE,	Ag,	f0:	S	::=	E,	1:

E	::=	E	PLUS	T,	2:	E	::=	T,	3:	T	::=	T	TIMES	F,	4:	T	::=	F,	5:	F	::=	OPEN	E	CLOSE,	6:	F	::=	A	g,	0)	The	set	of	items	used	in

the	construct ion	of	the	NFSA	is	thus	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	S!	E]	S	!E]	E	!	E	PLUS	T]	E	!E	PLUS	T]	E	!E	PLUS	T]	E	!E

PLUS	T]	E!	T]	E	!T]	T	!	T	TIMES	F]	T	!T	TIMES	F]	11:	12:	13:	14:	15:	16:	17:	18:	19:	20:	T	!T	TIMES	F]	T	!T	TIMES	F]	T!

F]	T	!F]	F	!	OPEN	E	CLOSE]	F	!OPEN	E	CLOSE]	F	!OPEN	E	CLOSE]	F	!OPEN	E	CLOSE]	F!	A]	F	!A]

The	NFSA	constructed	according	to	the	above	rules	is	depicted	in	gure	6.2.	It 	would,	of	course,	be	possible	to	use	this

nondeterminist ic	automaton	direct ly	for	parsing	{	in	that 	case,	the	skeleton	parser	would	remember	not	only	a	current	state	but	a

set	of	states,	and	would	check	for	the	following	states	for	all	elements	of	this	set 	and	the	current	input	symbol.	This	would

however,	be	the	same	computat ions	that	are	needed	for	comput ing	the	DFSA.	They	would,	however,	have	to	be	recomputed	at

every	step.	A	gain	in	e	ciency	without	loss	of	clarity	of	the	algorithm	can	be	e	ected	by	comput ing	the	determinist ic	automaton.

6.2.2	Obtaining	a	DFSA

The	method	used	here	for	obtaining	a	determinist ic	automaton	from	the	NFSA,	is	an	opt imized	algorithm	described	in	Gough

Gou88]	that 	uses	-closure	to	construct 	just 	the	reachable	states	in	the	DFSA.	The	DFSA	transit ion	table	is	generated	row	by

row,	start ing	with	the	-closure	of	the	start 	state	of	the	NFSA	as	the	label	for	the	rst 	row.	There	is	a	column	for	each	input	symbol

of

6.2.	CONSTRUCTING	A	PARSING	TABLE

0	2	8	1	q0	S	!	E]

?	-

129

S!E]

T

E

3	?	E	!	E+T]	4	?E	E	!	E	+T]

E!T]

7

*

E	!	T]

Q	Q

9	T	!	T*F]	14	T!F]

F

Q	s	Q

?

13

T	!	F]

?

9

@	@

10	T	!	T	*F]	11	?*	T	!	T*	F]	F	!	a]

?

F

Q	T	Q	Q	s

+	5	?	E	!	E+	T]

6	?T	E	!	E+T]

-

@	@

15	?	F	!	(E)]	16	?(F	!	(E)]	18	F	!	(E)]

)

@	@	R	@

12	T	!	T*F]	20	F!a]

a

-

19

17	?E	F	!	(E)]

Figure	6.2:	The	NFSA	for	Gexpression	the	alphabet.	The	entries	for	each	column	consist 	of	the	-closure	of	the	set	of	states

reachable	from	the	set	of	states	in	the	row	label	by	a	t ransit ion	on	the	symbol	for	that 	column.	If	a	new	set	of	states	is	created,

a	new	row	is	added	to	the	transit ion	table	with	this	set 	of	states	as	the	label.	Since	the	number	of	subsets	of	a	nite	set 	is

bounded,	this	process	will	eventually	terminate:	either	when	no	new	sets	are	created	or	when	all	sets	of	subsets	have	been

generated.	When	this	process	is	completed,	a	new	state	name	is	given	to	each	set	of	states.	If	any	state	in	the	set	is	a	nal

state,	the	DFSA	state	is	now	also	a	nal	state.	Figure	6.3	depicts	the	generat ion	of	the	DFSA	from	the	NFSA	for	the

Gexpression	.	The	set	of	nal	states	for	the	DFSA	is	f1,	2,	3,	4,	9,	10,	11g.	The	determinist ic	state	numbers	represent	the

following	equivalence	classes	of	viable	pre	xes:

I0	:

S!	E!	E!	T!	T!	F!	F!

E]	E	PLUS	T]	T]	T	TIMES	F]	F]	OPEN	E	CLOSE]	A]

130	NFSA	set	of	states	f0,1,3,	7,9,13,	15,19g	f2,4g	E	T	F	a

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

+	*	()	New	state	0	1	2	3	4	5	6	7

f2,4g	f8,10g	f14g	f20g	f5,9,13,	15,19g

f3,7,9,

13,15,	16,19g

f8,10g	f14g	f20g	f3,7,9,	f4,17g	f8,10g	f14g	f20g

13,15,	16,19g	f5,9,13,	15,19g

f11,15,	19g	f3,7,9,

13,15	16,19g	f3,7,9,	13,15	16,19g	f3,7,9,	13,15	16,19g

f6,10g	f14g	f20g	f12g	f20g	f5,9,13,	15,19g

f11,15,	19g	f4,17g	f6,10g	f12g	f18g

I1	:	I2	:	I3	:	I4	:	I5	:

f18g	8

9	10	11

f11,15,	19g

Figure	6.3:	Construct ing	the	DFSA	for	Gexpression

S	!E]	E	!E	PLUS	T]	E	!T]	T	!T	TIMES	F]	T	!F]	F	!A]	E	!	E	PLUS	T]	E!	T]	T	!	T	TIMES	F]	F	!	OPEN	E	CLOSE]	F	!OPEN	E

CLOSE]	F!	A]	T!	F]	E	!E	PLUS	T]	T	!	T	TIMES	F]	T!	F]	F	!	OPEN	E	CLOSE]	F!	A]

I6	:

6.2.	CONSTRUCTING	A	PARSING	TABLE

I7	:

131

I8	:	I9	:	I10	:	I11	:

E	!E	PLUS	T]	F	!OPEN	E	CLOSE]	E	!E	PLUS	T]	T	!T	TIMES	F]	T	!T	TIMES	F]

T	!T	TIMES	F]	F	!	OPEN	E	CLOSE]	F!	A]

F	!OPEN	E	CLOSE

]

The	DFSA	can	be	constructed	direct ly	from	the	transit ion	table	and	is	given	in	gure	6.4.	E	1	*;	7	+	F	10
?	;	;	;	?;

0

;	;

T;

;

a

2	(a

-

4

HH	HH	A	F	H	HH	A	HH	A	H	A	j	H	A	(T	A	3	A	@	@	A	;	6	F;	@	A	@	A	;	@	U	;	?	@A	@	R	@

a

5

(

@	I	@*

6

9

S	o	S	S

a	T

S	S	-

(

;	;	;

8	+;
;

?

E

@	R

)	11

6

F

Figure	6.4:	The	DFSA	for	Grammar	Gexpression

6.2.3	Construct ion	of	the	Parsing	Table

How	is	a	parsing	table	constructed	from	a	DFSA?	The	current	state	of	the	DFSA	and	the	current	lookahead	must	determine

whether	to	shift 	a	symbol	onto	the	stack,	to	reduce	a	product ion,	or	to	raise	an	error.	Each	state	in	the	DFSA	is	a	set 	of	items

represent ing	an	equivalence	class	of	viable	pre	xes.	If	there	is	at 	most	one	complete	item	in	the	set,	or	if	there	is	a	complete

item,	then	there	is	no	item	of	the	form	A	!	X]	with	X	2	T	in	the	set,	and	the	grammar	is	LR(0).	The	parsing	skeleton	will	use	the

stack	to	store	the	viable	pre	x,	t racing	out	the	recognit ion	using	the	DFSA.	When	it 	nds	a	complete	item,	the	corresponding

product ion	will	be	reduced.	A

132

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

complete	item	is	found	in	the	DFSA	whenever	a	handle,	one	of	the	right 	hand	sides	of	a	product ion,	is	on	the	stack	and	the	state

of	the	DFSA	is	a	nal	state1.	So	if	the	lookahead	corresponds	to	one	of	the	labels	on	a	t ransit ion,	the	parsing	table	should

indicate	a	shift ing	act ion.	If	the	lookahead	determines	that	a	reduct ion	can	be	made	{	and	that	is	the	case	when	a	completed

item	is	in	the	state	{	the	table	should	indicate	what	reduct ion	is	to	be	made,	and	to	show	where	to	cont inue	the	recognit ion.

Tradit ionally	such	a	parsing	table	is	divided	into	two	parts.	The	act ion	table	returns	an	act ion	(shift ,	reduce	and	product ion

number,	or	error)	and	the	following	state	for	the	current	state	and	the	current	lookahead.	The	goto	table,	which	is	consulted	after

reduct ion,	maps	the	state	uncovered	on	the	state	stack	after	the	reduct ion	and	the	non-terminal	on	the	left 	hand	side	of	the

product ion	reduced	to	the	following	state.	The	act ion	table	follows	direct ly	from	the	DFSA.	It 	is	usually	represented	as	a	matrix,

as	seen	in	the	example	below2.	For	each	state	in	the	DFSA	there	is	a	row	in	the	table,	and	a	column	for	each	symbol	in	T.	If	for

any	state	there	is	an	arc	labelled	with	a	terminal	symbol	leading	out	of	it ,	the	act ion	shift 	and	the	number	of	the	state	(i)	to	which

the	arc	leads	is	entered	in	the	table	at 	the	posit ion	for	that 	state	and	symbol	as	Si	.	If	there	is	a	complete	item	in	the	state,	the

follow	set	for	the	left 	hand	side	of	this	product ion	must	be	calculated3.	A	reduct ion	by	the	product ion	of	the	complete	item	is

entered	into	the	table	for	the	state	and	for	each	of	the	symbols	in	the	follow	set	as	Rj	with	j	as	the	product ion	label	unless	there

is	more	than	one	completed	item,	in	which	case	there	is	a	reduce-reduce	con	ict .	The	follow	set	for	a	non-terminal	is	de	ned	as

ASU86]:

FIRST(X)	If	X	2	T,	then	FIRST(X)	=	fXg.	If	X	!	2	P,	then	add	to	FIRST(X).	If	X	2	N	and	X	!Y1	Y2	:	:	:	Yk	is	a	product ion,	then

place	a	in	FIRST(X)	if	for	some	i,

is	in	FIRST(Yi),	and	is	in	all	of	FIRST(Y1),	:	:	:	,	FIRST(Yi;1).	If	is	in	all	of	the	FIRST(Yi)	then	add	to	FIRST(X).
a

Note	that	it 	is	possible	for	there	to	be	a	handle	on	the	stack	when	there	are	no	complete	items	in	the	current	state.	The

product ion	indicated	by	the	handle	is	reduced,	the	appropriate	number	of	elements	are	popped	o	the	symbol	and	the	state

stack,	and	depending	on	the	state	found	there	and	the	left 	hand	side	of	the	product ion	just 	reduced,	the	next	state	of	the	DFSA

will	be	calculated	(called	the	goto).	The	automaton	is	returned	to	the	state	it 	was	in	just 	before	the	rst 	element	of	the	handle

was	pushed	onto	the	stack,	either	by	shift 	or	reduce,	and	the	next	state	is	chosen	as	if	the	reduced	left 	hand	side	were	the	next

input	symbol.	This	is	surely	the	reason	chosen	by	DeRemer	for	prepending	the	left 	hand	side	to	the	input	in	DeR71],	which	was

the	theoret ical	basis	given	by	Polak	for	doing	the	same	in	his	implementat ion.	2	Since	the	language	of	the	prover	does	not	have

a	matrix	data	type,	a	structurally	equivalent	representat ion	(an	associat ion	list)	will	be	used.	3	The	follow	is	calculated	with	k

symbols	of	lookahead.	The	examples	use	k	=	1.

1

in	FOLLOW(B).	If	there	is	a	product ion	A	!	B	2	P,	or	a	product ion	A	!	B	where	FIRST()	contains	,	then	everything	in	FOLLOW(A)

is	in	FOLLOW	(B).	There	can	be	a	reduct ion	from	a	state	that	also	has	a	shift 	act ion	if	the	follow	set	for	the	left 	hand	side	of	the

product ion	does	not	contain	any	lookahead	symbols	for	which	a	shift 	is	de	ned	{	otherwise	there	is	a	shift -reduce	con	ict .	In

Gexpression	,	the	follow	sets	for	the	left 	hand	sides	are

FOLLOW(A)	Place	a	in	FOLLOW(S)	where	S	is	the	start 	symbol	and	a	is	the	input	right 	end	marker.	If	there	is	a	product ion	A	!	B

2	P,	then	everything	in	FIRST()	except	for	is	placed

6.2.	CONSTRUCTING	A	PARSING	TABLE

A	OPEN	CLOSE	TIMES	PLUS	EOF	E	0	S4	S5	1	1	S6	R0	2	R2	S7	R2	R2	3	R4	R4	R4	R4	4	R6	R6	R6	R6	5	S4	S5	8	6	S4	S5

7	S4	S5	8	S11	S6	9	R1	S7	R1	R1	10	R3	R3	R3	R3	11	R5	R5	R5	R5	Figure	6.5:	The	Parsing	Table	for	Gexpression	T	F	2	3

133

2	9

3	3	10

State	stack	Symbol	stack	Input	0	A	PLUS	A	TIMES	A	EOF	04	A	PLUS	A	TIMES	A	EOF	03	F	PLUS	A	TIMES	A	EOF	02	T

PLUS	A	TIMES	A	EOF	01	E	PLUS	A	TIMES	A	EOF	016	E	PLUS	A	TIMES	A	EOF	0164	E	PLUS	A	TIMES	A	EOF	0163	E

PLUS	F	TIMES	A	EOF	0169	E	PLUS	T	TIMES	A	EOF	01697	E	PLUS	T	TIMES	A	EOF	016974	E	PLUS	T	TIMES	A	EOF	0	1

6	9	7	4	10	E	PLUS	T	TIMES	F	EOF	0169	E	PLUS	T	EOF	01	E	EOF	00	S	EOF	Figure	6.6:	The	Parsing	of	A	PLUS	A	TIMES	A

EOF	FOLLOW(E)	=	fCLOSE,	PLUS,	EOF	g	FOLLOW(T)	=	fCLOSE,	TIMES,	PLUS,	EOF	g	FOLLOW(F)	=	fCLOSE,	TIMES,

PLUS,	EOF	g	FOLLOW(S)	=	fEOF	g

Act ion	S4	R6	R4	R2	S6	S4	R6	R4	S7	S4	R6	R3	R1	R0	Accept

For	all	other	entries,	the	error	act ion	is	inserted.	Error	act ions	are	usually	denoted	by	empty	cells	in	the	matrix	representat ion.	A

reduct ion	by	the	goal	symbol	(the	axiom)	was	de	ned	to	be	the	accept	act ion	above.	The	goto	table	has	rows	for	all	states	that

have	outgoing	arcs	labelled	with	non-terminal	symbols.	After	a	reduct ion	has	removed	the	appropriate	number	of	state	markers

from	the	state	stack,	the	state	number	that	was	valid	just 	prior	to	the	recognit ion	of	the	right 	hand	side	is	on	the	top.	The	goto

state	is	the	state	pointed	to	by	the	outgoing	arc	labelled	with	the	non-terminal	on	the	left 	hand	side.	The	parsing	table	is	just 	a

collect ion	of	both	an	act ion	and	a	goto	table.	The	parse	of	the	string	a+a*a	using	this	parsing	table	is	given	in	Figure	6.6.

134

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

6.3	Implement ing	the	Table	Generator

Each	step	in	the	generat ion	process	will	be	described	in	detail	here,	giving	an	implementat ion	in	the	Boyer-Moore	logic.

6.3.1	Creat ing	the	NFSA

The	rst 	job	is	to	construct 	the	set	of	items	for	the	product ions	in	the	grammar.	This	set 	contains	product ions	that	are	the	same

as	the	product ions	in	the	grammar,	except	that 	they	have	a	fresh	symbol,	dot ,	put 	at 	all	possible	intermediate	posit ions	at 	which

a	recognizer	could	be	during	the	recognit ion	of	a	right 	hand	side.	The	recursive	funct ion	shift -dots-through	cdrs	down	the	right

hand	side	of	a	product ion	insert ing	the	dot	at 	all	possible	posit ions.	If	for	some	reason	the	left 	part 	of	the	right 	hand	side	(lrhs-in)

is	not	a	list ,	it 	is	coerced	to	nil.	The	funct ion	insert-dots	(called	for	each	product ion),	splits	it 	into	its	components	and	calls	the

funct ion	shift -dots-through,	which	returns	a	list 	of	product ions.	shift -dots-through	(lhs	,	lrhs-in	,	rrhs	,	label)	=	let 	lrhs	be	if	lrhs-in

'nil	then	nil	else	lrhs-in	endif

Definit ion:

in	if	rrhs'	nil	then	list 	(mk-prod	(label	,	lhs	,	append	(lrhs	,	list 	(dot))))	else	append	(list 	(mk-prod	(label	,	lhs	,	append	(lrhs	,	append

(list 	(dot),	rrhs)))),

shift -dots-through	(lhs	,	append	(lrhs	,	list 	(car	(rrhs))),	cdr	(rrhs),	label))	endif	endlet

Definit ion:

insert-dots	(prod)	=	let 	lhs	be	sel-lhs	(prod),	lrhs	be	nil,	rrhs	be	sel-rhs	(prod),	label	be	sel-label	(prod)

in

shift -dots-through	(lhs	,	lrhs	,	rrhs	,	label)	endlet 	A	few	small	sanity	lemmata	could	be	proven	here,	such	as	the	expected	number

of	items	produced	for	a	product ion	being	one	more	than	the	number	of	symbols	on	the	the	right 	hand	side,	or	that 	removing	the

dots	will	result 	in	the	original	product ion	(i.e.	no	symbols	are	switched).	The	construct ion	of	the	set	of	LR(0)	items	for	a	grammar

collects	the	items	for	each	product ion	in	the	grammar.	It 	uses	union	just 	in	case	there	should	be	a	duplicate	product ion	in	the

grammar.	construct-item-set	(prods)	=	if	prods	'	nil	then	nil	else	insert-dots	(car	(prods))	construct-item-set	(cdr	(prods))	endif

Definit ion:

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

Definit ion:

135

lr-0-items	(grammar)	=	construct-item-set	(sel-product ions	(grammar))	This	set 	of	product ions	can	now	be	seen	to	construct 	a

non-determinist ic	automaton,	as	demonstrated	in	sect ion	6.2.1.	Each	item	represents	a	state.	There	are	t ransit ions	labelled

with	symbols	from	one	state	to	another	if	the	dot	can	be	seen	as	\jumping	over"	the	symbol,	or	if	the	symbol	after	the	dot	is	a

nonterminal	and	the	transit ion	is	to	a	state	with	the	dot	in	the	rst 	posit ion.

6.3.2	Transforming	the	NFSA	to	an	Equivalent	DFSA

Closure

The	transformat ion	of	the	NFSA	into	an	equivalent	DFSA	is	done	by	construct ing	the	canonical	collect ion	for	the	set	of

product ions	in	the	grammar.	The	rst 	major	funct ion	needed	for	the	t ransformat ion	is	closure.	It 	collects	from	any	state	all	the

possible	following	states	reachable	from	this	state	by	any	number	of	steps.	This	means	that	new	items	reachable	by	an	-step

are	added	to	the	set	unt il	no	new	items	can	be	added.	The	shell	item-set	is	used	for	represent ing	the	not ion	of	a	set 	of	item

sets.	A	rst 	implementat ion	using	only	lists	confused	me	because	the	depth	of	the	parentheses	were	di	cult 	to	understand.	The

shell	o	ers	an	explicit 	tag	for	marking	a	set	of	items.	Problemat ic	is,	however,	that 	now	all	the	usual	funct ions	on	sets	(union,

equal,	car,	cdr)	have	to	be	implemented	for	the	shell.	The	funct ion	first-item	has	the	same	funct ionality	as	car,	and	rest-items

the	same	as	cdr.	A	funct ion	is	also	needed	to	determine	the	size	of	an	item	set	so	that	it 	can	be	used	in	measures.	recognizer

funct ion	symbol	item-setp	,	and	1	accessor:	sel-items	,	with	type	restrict ion	(noneof)	and	default 	value	zero.

Definit ion:	Event:	Add	the	shell	item-set	,	with	bottom	object 	funct ion	symbol	empty-item-set	,	with

rst-item	(is)	=	if	sel-items	(is)	'	nil	then	nil	else	car	(sel-items	(is))	endif

Definit ion:

rest-items	(is)	=	if	sel-items	(is)	'nil	then	nil	else	item-set	(cdr	(sel-items	(is)))	endif

Definit ion:

item-set-union	(is1	,	is2)	=	if	(is1	=	empty-item-set)	_	(sel-items	(is1)'	nil)	_	(:	item-setp	(is2))	_	(:	item-setp	(is1))	then	is2	elseif

rst-item	(is1)	2	sel-items	(is2)	then	item-set-union	(rest-items	(is1),	is2)	else	item-set-union	(rest-items	(is1),	item-set

(append	(list 	(rst-item	(is1)),	sel-items	(is2))))	endif

136

Definit ion:

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

equal-item-set	(is1	,	is2)	=	let 	guts-is1	be	sel-items	(is1),	guts-is2	be	sel-items	(is2)

in

item-setp	(is1)	^	item-setp	(is2)	^	(guts-is1	=	guts-is2)	endlet

Definit ion:

item-set-size	(item-set)	=	if	(:	item-setp	(item-set))	_	(sel-items	(item-set)	'	nil)	_	(item-set	=	empty-item-set)	then	0	else	1	+

item-set-size	(rest-items	(item-set))	endif	These	funct ions	turned	out	to	be	a	source	of	error	when	the	table	construct ion	was

rst 	implemented.	Theorems	should	have	been	formulated	for	stat ing	the	correctness	of	these	funct ions,	and	they	should	have

been	proven	before	cont inuing.	The	main	problem	was	that	first-item	returns	something	of	type	item,	while	rest-items	must

return	a	set	of	items.	This	was	badly	implemented	{	rest-items	returned	a	list 	of	items	excluding	the	rst 	item,	which	was	then

repacked	into	an	item	set	at 	t imes	when	it 	had	become	apparent	that 	it 	was	necessary.	The	default 	value	for	the	sel-items

component	was	originally	set 	to	be	empty-item-set,	meaning	that	the	shell	used	the	ground	funct ion	for	both	an	unde	ned	item

and	an	unde	ned	set.	This	was	discovered	to	be	troublesome	when	all	of	the	item	sets	included	the	item	set	empty-item-set	as

elements.	This,	too,	should	have	rst 	been	proven	to	be	an	adequate	representat ion	for	item	sets	before	proceeding.	Not	only

must	one	concentrate	on	proving	the	goal	to	be	correct ,	it 	is	also	necessary	to	prove	minor	theorems	about	representat ions.

This	is	an	extremely	frustrat ing	and	t ime-consuming	process,	but	of	course	it 	is	even	more	frustrat ing	to	at tempt	to	prove

theorems	about	improperly	implemented	funct ions.	For	de	ning	the	closure	a	funct ion	is	also	needed	that	calculates	which	items

can	be	reached	from	a	seed	item	without	consuming	an	input	symbol.	These	items	are	exact ly	the	items	with	the	left 	hand	side

equal	to	the	symbol	direct ly	following	the	dot	in	the	seed	item	and	with	the	dot	in	the	rst 	posit ion	on	the	right 	hand	side.	The

funct ion	next-items	selects	all	items	out	of	a	list 	of	items	for	which	the	left 	hand	side	is	equal	to	a	symbol	and	the	dot	is	the	rst

element	of	the	right 	hand	side.	The	funct ion	symbol-after-dot	cdrs	down	the	right 	hand	side	of	an	item	looking	for	the	symbol

following	the	dot.	The	funct ion	epsilon-step-all	calls	next-items	on	all	of	the	items	in	the	item	set	sis	using	the	full	item	list 	fis.

Definit ion:	next-items	(sym	,	all-items)	=	if	all-items	'	nil	then	nil	elseif	(sym	=	car	(sel-lhs	(car	(all-items))))	^	(car	(sel-rhs	(car	(all-

items)))	=	dot)	then	append	(list 	(car	(all-items)),	next-items	(sym	,	cdr	(all-items)))	else	next-items	(sym	,	cdr	(all-items))	endif

Definit ion:

symbol-after-dot	(item-rhs)	=	if	item-rhs	'nil	then	nil	elseif	car	(item-rhs)	=	dot	then	if	cdr	(item-rhs)'	nil	then	nil

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

137

else	cadr	(item-rhs)	endif	else	symbol-after-dot	(cdr	(item-rhs))	endif

epsilon-step-all	(sis	,	s)	=	if	(sel-items	(sis)	'	nil)	_	(sis	=	empty-item-set)	_	(:	item-setp	(sis))	then	sis	else	item-set-union	(item-

set	(next-items	(symbol-after-dot	(sel-rhs	(rst-item	(sis))),	s)),	epsilon-step-all	(rest-items	(sis),	s))	endif	Since	the	addit ion	of

any	new	item	can	introduce	the	possibility	of	further	reachable	items,	this	process	must	be	cont inued	unt il	no	new	items	can	be

added	to	the	item	set.	Since	there	is	the	possibility	of	cycles	(item	1	can	have	a	t ransit ion	to	item	2	and	vice	versa),	it 	is	not	su

cient	to	add	the	closure	of	the	item	to	be	added.	A	closure	step	must	be	de	ned	to	be	the	item	set	reachable	in	one	step	from	an

item	set.	If	the	two	are	equal,	the	funct ion	terminates,	if	not ,	the	closure	step	must	be	repeated	again.	Since	the	funct ion	cannot

add	more	items	than	are	in	the	full	item	set,	the	di	erence	between	the	size	of	the	full	item	set	and	the	-closure	could	be	used	as

a	measure.	Definit ion:	closure-step	(set1	,	set2	,	s	,	clock)	=	if	clock	'	0	then	't imed-out	elseif	equal-item-set	(set1	,	set2)	then

set1	else	item-set-union	(set1	,	closure-step	(set2	,	epsilon-step-all	(set2	,	s),	s	,	clock	;	1))	endif	Definit ion:	closure	(seed-item-
set	,	s)	=	let 	rst 	be	epsilon-step-all	(seed-item-set	,	s)

Definit ion:

in

closure-step	(seed-item-set	,	rst 	,	s	,	length	(s))	endlet

The	Canonical	Collect ion

The	closure	funct ion	is	used	to	construct 	the	canonical	collect ion,	which	de	nes	the	determinist ic	nite	state	automaton.	The

funct ion	jump-dot	looks	through	a	list 	of	items	for	an	item	which	has	the	same	label	as	item	and	whose	dot	is	one	posit ion	further

to	the	right 	as	item.	A	check	is	included	that	the	symbol	\jumped	over"	is	actually	the	one	intended,	although	in	a	correct ly

constructed	item	set,	there	cannot	be	more	than	one	item	with	the	same	label	and	the	dot	moved	over	one	posit ion.	This	is	a

point 	that 	could	be	opt imized	when	doing	a	proper	proof	of	correctness	for	the	table	generator.	Definit ion:	jump-dot	(item	,	sym	,

s)	=	if	s	'	nil	then	nil	elseif	(sel-label	(item)	=	sel-label	(car	(s)))	^	(posit ion	(dot,	sel-rhs	(car	(s)))	=	(1	+	posit ion	(dot,	sel-rhs

(item))))	^	(nth	(posit ion	(dot,	sel-rhs	(item)),	sel-rhs	(car	(s)))=	sym)	then	car	(s)	else	jump-dot	(item,	sym	,	cdr	(s))	endif

138

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

jump-dot	is	used	in	the	construct ion	of	the	goto	funct ion	Ij	for	an	item	set	Ii	.	The	item	set	Ij	consists	of	all	the	items	reachable	by

jumping	the	dot	over	its	following	symbol	for	all	elements	of	Ii	.	There	was	a	problem	determining	the	terminat ion	condit ion	for	an

empty	item	set	{	it 	could	not	be	dist inguished	from	an	ill-formed	one	or	an	item	set	that 	had	no	items.	Thus,	the	funct ion	dot-

sym-in-item-set	cdrs	down	a	list 	of	items	instead	of	going	itemwise	through	a	set	of	items.	This	is	highly	unsat isfactory,	but	it

works	for	the	present.	The	goto-funct ion	constructs	and	deconstructs	the	item	sets	as	necessary,	jumps	the	dot	for	all	items	in

the	set,	and	then	takes	the	-closure	for	the	result ing	item	set.	Definit ion:	dot-sym-in-item-set	(sym	,	items	,	s)	=	if	items	'nil	then

nil	elseif	sym	=	nth	(1	+	posit ion	(dot,	sel-rhs	(car	(items))),	sel-rhs	(car	(items)))	then	let 	new	be	list 	(jump-dot	(car	(items),	sym

,	s))

in

else	dot-sym-in-item-set	(sym,	cdr	(items),	s)	endif

Definit ion:

new

dot-sym-in-item-set	(sym	,	cdr	(items),	s)	endlet

goto-funct ion	(is	,	symbol	,	s)	=	let 	jump	be	dot-sym-in-item-set	(symbol	,	sel-items	(is),	s)

in	if	jump'	nil	then	empty-item-set	else	closure	(item-set	(jump),	s)	endif	endlet

Now	the	canonical-collect ion	can	be	implemented.	Beginning	with	a	seed	item	set,	which	is	the	epsilon	closure	of	the	axiom,	item

sets	will	be	added	to	the	collect ion	with	the	funct ion	items	unt il	no	further	item	sets	can	be	constructed.	The	measure	for	this

funct ion	should	be	the	di	erence	between	the	number	of	elements	in	the	power	set 	of	the	full	item	set	and	the	number	of

elements	in	the	set-of-item-sets.	However,	the	not ion	of	power	set 	contributes	unnecessarily	to	the	complexity	of	the	funct ion.

It 	is	su	cient	to	use	the	length	of	the	full	item	set:	if	ever	the	funct ion	items	runs	out	of	t ime,	the	marker	'items-t imes-out	will	be

consed	to	the	end	of	the	set	of	item	sets.	The	funct ion	items1	cdrs	down	the	item	set	list ,	using	collect ion	for	calculat ing	the

collect ion	for	one	item	set	and	creat ing	the	union	of	that 	with	the	collect ion	for	the	rest 	of	the	items.	Definit ion:	collect ion	(is	,

symbol-list 	,	s)	=	if	symbol-list '	nil	then	nil	else	let 	goto	be	goto-funct ion	(is	,	car	(symbol-list),	s)

in	if	goto	=	empty-item-set	then	collect ion	(is	,	cdr	(symbol-list),	s)	else	append	(list 	(goto),

collect ion	(is	,	cdr	(symbol-list),	s))	endif	endlet 	endif

Definit ion:

items1	(set-of-item-sets	,	v	,	s)	=	if	set-of-item-sets	'nil	then	set-of-item-sets	else	collect ion	(car	(set-of-item-sets),	v	,	s)

items1	(cdr	(set-of-item-sets),	v	,	s)	endif

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

Definit ion:

139

items	(set-of-item-sets	,	v	,	s	,	clock)	=	if	clock'	0	then	cons	(set-of-item-sets	,	'items-t imes-out)	else	let 	cprime	be	items1	(set-

of-item-sets	,	v	,	s)

in	if	subsetp	(cprime	,	set-of-item-sets)	then	set-of-item-sets	else	let 	sis	be	set-of-item-sets	cprime	in	items	(sis	,	v	,	s	,	clock	;
1)	endlet 	endif	endlet 	endif

The	construct ion	of	the	seed	item	set	is	done	by	going	through	all	of	the	items	looking	for	items	with	the	axiom	label	and	a	dot	as

the	rst 	symbol	on	the	right 	hand	side.	There	should	only	be	one,	but	it 	does	not	matter	if	there	is	more	than	one.	The	closure	of

this	seed	item	set	is	the	rst 	item	set	in	the	collect ion.	The	call	to	items	will	construct 	the	complete	canonical	collect ion.

Definit ion:

start-item	(start 	,	s)	=	if	s	'	nil	then	nil	elseif	(start 	=	sel-label	(car	(s)))	^	(car	(sel-rhs	(car	(s)))	=	dot)	then	item-set	(list 	(car	(s

)))	else	start-item	(start 	,	cdr	(s))	endif

Definit ion:

canonical-collect ion	(grammar)	=	let 	start 	be	sel-axiom	(grammar),	voc	be	vocab	(grammar),	s	be	lr-0-items	(grammar)

in	let 	c	be	list 	(closure	(start-item	(start 	,	s),	s))	in	items	(c	,	voc	,	s	,	length	(s))	endlet 	endlet

6.3.3	Extract ing	the	Parsing	Table

The	canonical	collect ion	is	a	determinist ic	nite	state	automaton.	The	states	of	this	automaton	are	elements	of	the	power	set 	of

the	states	for	a	nondeterminist ic	automaton.	The	parsing	table,	consist ing	of	the	goto	and	the	act ion	tables,	is	extracted	from

the	canonical	collect ion	as	described	below.

6.3.4	Act ion	Table

The	states	in	the	determinist ic	automaton	are	given	new	names	by	numbering	them.	State	0	will	be	the	item	set	I0	,	1	the	item

set	I1	,	etc.	The	goto	funct ion	on	the	canonical	collect ion	will	be	reused	to	determine	the	transit ion	funct ion	for	the	act ion	table.

The	funct ion	mk-act iontab	cdrs	down	the	canonical	collect ion	calling	the	funct ion	one-state	for	each	item	set.	one-state

calculates	the	act ions	from	this	state	for	all	members	of	the	terminal	symbols	and	the	end	of	le	marker.	The	transit ion

construct ion	funct ion	a-mk-transit ion	is	similar	to	the	one	used	in	construct ing	the	NFSA	for	the	scanning,	it 	has	been	given	a	di

erent	name	so	that	it 	is	clear	as	to	which	one	is	being	used.

140

Definit ion:	Definit ion:

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

a-mk-transit ion	(state	,	input	,	act ion)	=	cons	(cons	(state	,	input),	act ion)	one-state	(state	,	item-set	,	cc	,	terms	,	s	,	follows)

=	if	terms	'nil	then	nil	else	append	(list 	(a-mk-transit ion	(state	,	car	(terms),	state-act ion	(item-set	,	cc	,	car	(terms),	s	,	follows

))),	one-state	(state	,	item-set	,	cc	,	cdr	(terms),	s	,	follows))	endif

Definit ion:

mk-act iontab	(state	,	cc	,	fullcc	,	terms	,	s	,	follows)	=	if	cc'	nil	then	nil	else	append	(one-state	(state	,	car	(cc),	fullcc	,	terms	,	s	,

follows),	mk-act iontab	(1	+	state	,	cdr	(cc),fullcc	,	terms	,	s	,	follows))	endif

The	funct ion	state-act ion	determines	the	act ion	for	a	part icular	state	and	symbol.	The	shell	and	selector	funct ion	for	act ions

were	discussed	in	Sect ion	5.1.9.	state-act ion	uses	the	goto-funct ion	and	the	follow	set,	passed	through	as	a	parameter,	to

determine	both	a	possible	shift 	and	a	possible	reduce	act ion.	The	shift 	item	can	only	be	constructed	if	the	symbol	is	valid	for

some	item	in	the	item	set,	that 	is,	if	it 	is	the	symbol	immediately	following	the	dot.	If	there	is	just 	one	completed	item	in	the	item

set,	then	there	is	a	possible	reduct ion	if	the	symbol	is	in	the	follow	set	for	the	left 	hand	side	of	the	completed	item.	If	there	is

more	than	one	completed	item,	there	is	a	reduce-reduce	con	ict .	The	possible	shift 	and	the	possible	reduct ion	act ions	are	then

examined.	If	both	are	not	de	ned,	this	is	an	error	act ion.	If	both	are	de	ned,	there	is	a	shift -reduce	con	ict .	if	only	one	is	de	ned,

this	is	the	act ion	that	the	funct ion	should	return	for	this	state	and	this	symbol.

Definit ion:

valid-item	(item-set	,	sym)	=	if	(:	item-setp	(item-set))	_	(item-set	=	empty-item-set)	_	(sel-items	(item-set)	'nil)	then	f	else	let

item	be	rst-item	(item-set)

in	let 	rhs	be	sel-rhs	(item)	in	let 	dot-pos	be	posit ion	(dot,	rhs)	in	if	sym	=	nth	(1	+	dot-pos	,	rhs)	then	t 	else	valid-item	(rest-items

(item-set),	sym)	endif	endlet 	endlet 	endlet 	endif

Definit ion:	Definit ion:

is-completed-item	(item)	=	(car	(last 	(sel-rhs	(item)))	=	dot)	completed-items	(item-set)	=	if	(:	item-setp	(item-set))	_	(item-set

=	empty-item-set)

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

141

_	(sel-items	(item-set)'	nil)	then	nil	elseif	is-completed-item	(rst-item	(item-set))	then	cons	(rst-item	(item-set),	completed-

items	(rest-items	(item-set)))	else	completed-items	(rest-items	(item-set))	endif

Definit ion:

is-in-follow	(after	,	before	,	follows)	=	if	follows	'	nil	then	f	elseif	before	=	caar	(follows)	then	after	2	cdar	(follows)	else	is-in-

follow	(after	,	before	,	cdr	(follows))	endif

Definit ion:

state-act ion	(item-set	,	cc	,	sym	,	s	,	follows)	=	let 	shift 	be	if	valid-item	(item-set	,	sym)	then	mk-shift -act ion	(posit ion	(goto-

funct ion	(item-set	,	sym	,	s),	cc))	else	empty-act ion	endif,	reduce	be	let 	comps	be	item-set	(completed-items	(item-set))

in	if	item-set-size	(comps)	=	1	then	if	sym	2	lookup-follow	(car	(sel-lhs	(rst-item	(comps))),	then	mk-reduce-act ion	(sel-label	(

rst-item	(comps)),	else	empty-act ion	endif	elseif	item-set-size	(comps)	'	0	then	empty-act ion	else	'reduce-reduce-conflict 	endif

endlet

follows)

sel-lhs	(rst-item	(comps)),	length	(sel-rhs	(rst-item	(comps)))	;	1)

in	if	is-act ion	(reduce)	then	if	shift 	=	empty-act ion	then	if	reduce	=	empty-act ion	then	mk-error-act ion	else	reduce	endif	elseif

reduce	=	empty-act ion	then	shift 	else	'shift -reduce-conflict 	endif	else	reduce	endif	endlet 	Goto	Table

The	goto	table	is	only	constructed	for	the	non-terminals	in	the	vocabulary.	For	all	symbols	A	in	the	non-terminals,	if	the	goto-

funct ion	for	item	set	Ii	and	A	is	item	set	Ij	,	then	the	entry	in	the	goto	table	for	i	and	A	is	j	.	This	is	easily	done	by	cdring	down	the

non-terminals	and	then	going	down	the	states	from	the	last 	to	the	rst .	This	t rick	{	the	state	numbers	are	the	posit ion	in	the

canonical	collect ion	plus	one	{	o	ers	an	easy	terminat ion	argument.	The	real	state	is	thus	one	less	than	the	value	of	the

parameter	state.

Definit ion:

mk-goto-1-nt 	(cc	,	nt 	,	state	,	s)	=	if	state	'	0	then	nil	else	let 	i-i	be	nth	(state	;	1,	cc)

142

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

in	let 	goto	be	goto-funct ion	(i-i	,	nt 	,	s)	in	if	goto	=	empty-item-set	then	mk-goto-1-nt 	(cc,	nt 	,	state	;	1,	s)	else	list 	(list 	(cons
(state	;	1,	nt),
Definit ion:

list 	('goto,	posit ion	(goto	,	cc))))	mk-goto-1-nt 	(cc	,	nt 	,	state	;	1,	s)	endif	endlet 	endlet 	endif

mk-gototab	(cc	,	nts	,	s)	=	if	nts'	nil	then	nil	else	mk-goto-1-nt 	(cc	,	car	(nts),	length	(cc),	s)	mk-gototab	(cc	,	cdr	(nts),	s)	endif

The	last 	stumbling	stone	on	the	road	to	the	extract ion	of	the	parsing	tables	was	the	de	nit ion	of	appropriate	funct ions	for	the

FIRST	and	FOLLOW	funct ions.	These	are	mult iply	mutually	recursive	and,	as	typically	de	ned	in	compiling	texts,	non-

terminat ing,	as	for	example,	in	cases	in	which	left -recursive	product ions	such	as	A	!	Ax	are	included	in	the	grammar.	In	addit ion	to

the	complex	recursive	de	nit ion,	a	\cycle-detector"	had	to	be	added,	in	order	to	stop	if	such	a	product ion	is	encountered.	Both

funct ions	used	clocks	for	acceptance,	as	the	terminat ion	argument	is	non-obvious.	An	upper	bound	for	driving	the	clock	is	the

product	of	the	number	of	product ions	and	the	number	of	symbols.	Since	first 	and	follow	are	so	horribly	complex,	no	proofs	were

completed	about	it .	This	is	unfortunate	because	they	are	the	basis	for	other	funct ions	in	the	table	construct ion	process,	and

thus,	no	theorems	could	be	proven	about	any	of	the	funct ions.	The	funct ion	delete	is	taken	from	the	bags	library	in	the	NQTHM-

1992	delivery	package.

Definit ion:

First 	and	Follow

delete	(x	,	l)	=	if	listp	(l)	then	if	x	=	car	(l)	then	cdr	(l)	else	cons	(car	(l),	delete	(x	,	cdr	(l)))	endif	else	l	endif	First 	of	all,	an	explicit

epsilon	notat ion	and	a	funct ion	exists-prod?	are	de	ned.	The	funct ion	exists-prod?	checks	to	see	if	a	product ion	with	a	speci	c

left 	hand	side,	right 	hand	side,	and	unspeci	ed	label	is	in	the	product ion	list .

Definit ion:	epsilon	=	'epsilon	Definit ion:

exists-prod?	(prods	,	lhs	,	rhs)	=	if	prods'	nil	then	f	elseif	(lhs	=	sel-lhs	(car	(prods)))	^	(rhs	=	sel-rhs	(car	(prods)))	then	t 	else

exists-prod?	(cdr	(prods),	lhs	,	rhs)	endif	There	are	three	mutually	recursive	funct ions	coded	into	this	funct ion	di	erent iated	by	a

tag:

first ,

which	are

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

'all-rhs

143

determines	the	first 	set 	for	the	right 	hand	side	of	a	product ion,	given	in	the	parameter	rhs,	'all-prods	cdrs	down	the	list 	of

product ions	given	in	the	prods	parameter,	and	'first 	is	called	for	a	symbol	given	in	the	parameter	x.	The	set	of	terminal	symbols,

the	complete	list 	of	grammar	product ions	gram-prods,	and	a	clock	complete	the	parameters	of	this	funct ion.

Definit ion:

rst 	(tag	,	x	,	rhs	,	prods	,	terms	,	gram-prods	,	clock)	=	if	clock'	0	then	't ime-ran-out	elseif	tag	=	'all-rhs	then	if	rhs'	nil	then	nil	else

let 	handle	be	rst 	('first ,	car	(rhs),nil,nil,	terms	,	gram-prods	,	clock	;	1)

elseif	tag	=	'all-prods	then	if	prods'	nil	then	nil	elseif	x	=	car	(sel-lhs	(car	(prods)))	then	rst 	('all-rhs,	x	,	sel-rhs	(car	(prods)),	nil,

terms	,	gram-prods	,clock	;	1)	rst 	('all-prods,	x	,nil,cdr	(prods),	terms	,	gram-prods	,	clock	;	1)	else	rst 	('all-prods,	x	,	nil,	cdr
(prods),	terms	,	gram-prods	,	clock	;	1)	endif	elseif	x	2	terms	then	list 	(x)	else	if	exists-prod?	(gram-prods	,	x	,	nil)	then	list
(epsilon)	else	nil	endif	rst 	('all-prods,	x	,	nil,	gram-prods	,	terms	,	gram-prods	,	clock	;	1)	endif
Definit ion:

in	if	epsilon	2	handle	then	handle	rst 	('all-rhs,	x	,	cdr	(rhs),	nil,	terms	,	gram-prods	,clock	;	1)	else	handle	endif	endlet 	endif

The	first 	of	a	list 	is	the	first 	of	the	car	of	the	list ,	and	if	that 	includes	epsilon,	then	the	first 	of	the	rest 	of	the	list 	is	included.	rst-list

(l	,	terms	,	prods)	=	if	l'	nil	then	nil	else	let 	rst-car	be	rst 	('first ,	car	(l),	nil,	nil,	terms	,	prods	,	length	(terms)	length	(prods))

in	if	epsilon	2	rst-car	then	rst-car	rst-list 	(cdr	(l),	terms	,	prods)	else	rst-car	endif	endlet 	endif

Compared	to	the	three-way	recursion	of	first ,	the	de	nit ion	of	the	follow	funct ion	is	relat ively	easy.	It ,	too,	is	de	ned	recursively,

and	consists	of	the	first 	for	some	sequence	of	symbols	and	possibly	a	number	of	follows	calculated	for	other	non-terminals.	The

symbols	considered	are	accumulated	in	cycle-killer	so	that	the	funct ion	will	stop	if	it 	at tempts	to	calculate	the	follow	for	a	symbol

that	has	already	been	seen.	There	is	quite	a	nest	of	lets,	as	many	of	the	computat ions	need	to	be	done	in	series.	Only	for	those

product ions	for	which	B	is	a	member	of	the	right 	hand	side	does	the	follow	need	to	be	calculated.	beta	is	set 	to	be

144

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

the	rest 	of	the	right 	hand	side	following	the	symbol,	and	the	first 	of	this	list 	is	calculated.	If	beta	is	nil,	i.e.	B	was	the	last 	symbol

or	epsilon	was	a	member	of	the	first ,	the	follow	of	the	left 	hand	side	of	that 	product ion	is	included,	which,	if	it 	is	the	left 	hand	side

of	the	axiom	will	also	cause	the	end	of	le	symbol	to	be	included.	The	epsilon	is	never	included	in	the	follow,	and	is	deleted	from

the	set	if	necessary.

Definit ion:

follow1	(b	,	prods	,	terms	,	all-prods	,	axiom-lhs	,	cycle-killer	,	clock)	=	if	clock	'	0	then	't ime-ran-out	elseif	(b	2	cycle-killer)	_	(b	2

terms)	then	nil	elseif	prods'	nil	then	nil	else	let 	rhs	be	sel-rhs	(car	(prods)),	lhs	be	car	(sel-lhs	(car	(prods)))

in	if	b	62	rhs	then	follow1	(b	,	cdr	(prods),	terms	,	all-prods	,	axiom-lhs	,	cycle-killer	,	clock	;	1)	else	let 	beta	be	nthcdr	(1	+
posit ion	(b	,	rhs),	rhs)	in	let 	f1	be	rst-list 	(beta	,	terms	,	all-prods)	in	if	(beta	=	nil)	_	(epsilon	2	f1)	then	if	lhs	=	axiom-lhs	then	list

(end-of-file)

follow1	(lhs	,	all-prods	,	terms	,all-prods	,	axiom-lhs	,	cons	(b	,	cycle-killer),	clock	;	1)	else	follow1	(lhs	,	all-prods	,	terms	,	all-
prods	,	axiom-lhs	,	cons	(b	,	cycle-killer),	clock	;	1)	endif

else	nil	endif

endlet 	endlet 	endif	endlet 	endif

(delete	(epsilon,	f1)	follow1	(b	,	cdr	(prods),	terms	,	all-prods	,	axiom-lhs	,	cycle-killer	,	clock	;	1))

The	funct ion	follow	pulls	the	grammar	apart ,	decides	if	the	end	of	le	marker	needs	to	be	included	(only	necessary	when	the	follow

for	the	left 	hand	side	of	the	axiom	is	computed),	and	calls	follow1	with	the	appropriate	parameters.

Definit ion:

follow	(a	,	gram)	=	let 	prods	be	sel-product ions	(gram),	axiom	be	sel-axiom	(gram),	terms	be	sel-terminals	(gram),	nonts	be

sel-nonterminals	(gram)

in	let 	axiom-lhs	be	car	(sel-lhs	(prod-nr	(sel-product ions	(gram),	axiom))),	clock	be	length	(prods)	length	(nonts)	in	if	a	=	axiom-

lhs	then	list 	(end-of-file)	follow1	(a	,	prods	,	terms	,	prods	,	axiom-lhs	,	nil,	clock)	else	follow1	(a	,	prods	,	terms	,	prods	,	axiom-

lhs	,	nil,	clock)	endif	endlet 	endlet

6.3.	IMPLEMENTING	THE	TABLE	GENERATOR

145

Construct 	Tables

The	funct ion	that	puts	everything	together	is	called	construct-tables.	It 	constructs	the	canonical	collect ion	from	the	grammar,

and	then	calls	the	appropriate	funct ions.	For	now,	it 	takes	the	list 	of	follow	sets	for	the	nonterminals	as	a	parameter,	should	a

funct ion	be	found	in	NQTHM	for	doing	this,	it 	would	be	calculated	here.	The	two	tables	will	be	passed	as	one	parameter	to	the

parser,	consed	together	by	the	funct ion	mk-tables	as	discussed	in	Sect ion	5.1.9.

Definit ion:

construct-tables	(grammar	,	follows)	=	let 	cc	be	canonical-collect ion	(grammar),	nts	be	sel-nonterminals	(grammar),	terms	be

append	(sel-terminals	(grammar)	,	end-of-file),	s	be	lr-0-items	(grammar)

in

mk-tables	(mk-act iontab	(0,	cc	,	cc	,	terms	,	s	,	follows),	mk-gototab	(cc	,	nts	,	s))	endlet

Opt imizat ion

Construct ing	the	actual	tables	for	PLR	0	turned	out	to	be	a	t ime-consuming	task.	The	interpret ive	loop	of	the	prover,	(R-LOOP)

needed	six	hours	to	calculate	the	canonical	collect ion	alone4.	Researchers	at 	CLInc	suggested	compiling	the	funct ions	that	are

executed,	and	this	indeed	brought	the	t ime	down	to	just 	under	three	hours.	But	the	table	generated	was	enormous:	There	were

112	states	and	40	terminal	symbols	and	thus	4480	entries	in	the	act ion	table	alone.	This	is	more	than	the	interpreter	can	handle,

any	at tempt	to	work	with	it 	crashed	the	invocat ion	stack.	A	simple	opt imizat ion	on	one-state	can	be	done	so	that	the	PLR	0

table	can	be	used.	All	error	entries	are	omit ted	here	and	the	act ion	lookup	funct ion	is	modi	ed	to	return	the	error	act ion	if	no	entry

can	be	found.	The	opt imized	table	for	PLR	0	can	then	be	completely	generated	on	a	Pent ium	90	KHz	running	Linux	in	just 	over

45	minutes.

Definit ion:

one-state	(state	,	item-set	,	cc	,	voc	,	s	,	follows)	=	if	voc	'	nil	then	nil	else	let 	act ion	be	state-act ion	(item-set	,	cc	,	car	(voc),	s	,

follows)

in	if	act ion	=	mk-error-act ion	then	one-state	(state	,	item-set	,	cc	,	cdr	(voc),	s	,	follows)	else	append	(list 	(a-mk-transit ion

(state	,	car	(voc),	act ion)),	endif	endlet 	endif

one-state	(state	,	item-set	,	cc	,	cdr	(voc),	s	,	follows))

Definit ion:

act ion-lookup	(terminal	,	state	,	act iontab)	=	let 	act ion	be	cdr	(assoc	(cons	(state	,	terminal),	act iontab))

in	if	is-act ion	(act ion)	then	act ion	else	mk-error-act ion	endif	endlet

And	since	the	mean	t ime	between	failure	of	the	server	at 	the	TFH	Berlin	was	about	4	hours	at 	that 	t ime,	it 	took	quite	a	number

of	t ries	to	compute.	The	sta	at 	the	center	were	certain	that	it 	was	this	computat ion	that	was	bringing	down	the	ent ire	network.

4

146

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

The	opt imized	table	for	PLR	0	,	which	can	be	found	at 	the	URL	given	on	page	3,	only	has	511	act ion	entries.	This	is	just 	over	a

tenth	of	the	size	of	the	complete	table.

6.4	Relevant	Theorems

This	sect ion	examines	some	of	the	relevant	theorems	that	could	perhaps	be	proven	about	a	parsing	table	generator.	A	major

problem	is	that 	it 	is	di	cult 	to	formulate	rst-order	theorems	about	a	second-order	program	such	as	a	parser	generator.	The	goal

is	to	prove	propert ies	that	hold	for	all	results	of	the	generated	parsers.	By	split t ing	the	parsing	process	into	a	parsing	skeleton	{

which	is	the	same	for	all	generated	tables	and	thus	easier	to	prove	correct 	{	and	a	table	generator	there	was	a	better	chance	of

being	able	to	do	this.	However,	only	theorems	about	the	skeleton	were	proven.	It 	was	shown	in	Chapter	5	that	if	the	parsing

skeleton	accepts	an	input	sequence,	no	matter	what	sort 	of	a	table	was	used,	the	sequence	of	reduct ions	taken	in	the	reverse

direct ion	de	ne	a	right 	derivat ion.	This	is	because	a	reduct ion	always	takes	place	at 	the	rightmost	non-terminal	point .	One	would

need	to	show	that	the	tables,	constructed	by	the	table	generator	for	a	grammar,	lead	to	acceptance	of	an	input	sequence	for

those	and	only	for	those	sequences	in	the	language	described	by	the	grammar.	That	is,	the	funct ions	construct-tables	and	parse

in	Figure	6.7	are	such	that	the	grammar,	the	input	sequence,	and	the	tree	constructed	using	the	tables	are	in	the	relat ionship	is-

in-language.

construct-tables

;	;	;	;	;	;	;

-

tables

-

parser

;	;	;	@	@	@	@	@

;

;

;	;	;	;

@	@	R	@

Grammar

Input

Tree

?

?

?

is-in-language	(input,	grammar,	t ree)	=Df	wf-t ree-in-grammar	(grammar,	t ree)	^	wf-alphabet	(input,	grammar)	^	leaves	(t ree)	=

input	^	is-wf-grammar	(grammar)

Figure	6.7:	Correctness	of	a	Parser	The	rst 	step	in	such	a	proof	would	surely	involve	the	demonstrat ion	that	the	construct ion

algorithm	works	correct ly.	This	proof	would	begin	by	showing	that	the	set	of	items	has	been

6.4.	RELEVANT	THEOREMS

constructed	properly	and	that	it 	is	a	NFSA.

147

Conjecture	1	(LR(0)	items	NFSA)	An	automaton	constructed	from	the	LR(0)	items	is	indeed

a	non-determinist ic	nite	state	automaton.

In	order	to	do	this,	a	funct ion	connect	would	have	to	be	constructed	that	makes	the	NFSA	that	is	based	on	the	LR(0)	items.

That	is,	considering	each	item	to	be	a	state	and	connect ing	states	with	t ransit ions	either	by	\jumping	the	dot"	or	on	a	nonterminal

expansion.	This	could	be	formulated	in	the	logic	as

Conjecture:	ndfsap-connect-lr-0-items

ndfsap	(connect	(lr-0-items	(grammar)))

although	surely	quite	a	number	of	hypotheses	would	be	necessary	for	the	proof.	Then	it 	must	be	shown	that	convert ing	this	to	a

determinist ic	automaton	works	properly.	This	was	proven	correct 	in	Chapter	3	for	NFSA	without	-t ransit ions.	Since	the

construct ion	method	explicit ly	includes	such	transit ions,	and	I	was	not	able	to	complete	that	proof,	this	must	remain	a

conjecture.

Conjecture	2	(NFSA	!	DFSA)	The	algorithm	applied	to	the	NFSA	above	will	produce	a

DFSA.

This	could	be	expressed	as	follows:

Conjecture:	dfsap-generate-dfsa-with-epsilon

dfsap	(generate-dfsa-with-epsilon	(connect	(lr-0-items	(grammar))))

The	last 	step,	reading	the	table	o	of	the	DFSA,	will	have	to	be	proven	correct 	as	well.	However,	for	the	following	conjectures,	I

am	unsure	how	exact ly	to	express	this	in	the	logic.	What	is	\appropriate"?	When	is	a	con	ict 	reported?

Conjecture	3	(Table	Generat ion)	The	tables	generated	from	the	DFSA	correspond	as	appropriate,	i.e.	shifts	for	t ransit ions,

reduct ions	for	nal	states,	and	the	goto	states	needed	after	reduct ion.

Conjecture	4	(Con	icts)	The	grammar	is	not	SLR(1)	if	and	only	if	at 	least 	one	con	ict 	is

reported.

The	key	to	tying	both	the	parsing	skeleton	and	the	tables	together	could	be	expressed	in	adequacy	conjectures	such	as	these	{

they	were	not	provable	after	many	years	of	t rying,	which	unfortunately	is	not	a	proof	that 	they	cannot	be	proven	mechanically.

Conjecture	5	(Adequacy)

The	table	indicates	a	shift 	if,	and	only	if,	there	is	not	a	handle	on	the	symbol	stack.	The	table	indicates	a	reduct ion	if,	and	only	if,

there	is	a	handle	on	the	stack	equal	to	the	right-hand	side	of	the	product ion	indicated	in	the	reduct ion.

148

CHAPTER	6.	THE	PARSER	TABLE	GENERATOR

The	table	will	indicate	a	reduct ion	by	the	axiomat ic	product ion	if	and	only	if	the	input	sequence	belongs	to	the	language	of	the

grammar,	it 	has	been	exhausted	by	the	parser,	and	the	stacks	have	no	extraneous	informat ion	on	them.	The	goto	state	is

always	the	same	as	the	state	obtained	by	retracing	the	right 	hand	side	back	up	through	the	DFSA,	and	taking	the	branch	of	the

left 	hand	side	of	the	product ion	being	reduced.

The	parser	should	always	return	a	parse	tree,	no	matter	if	the	input	sequence	is	accepted	or	rejected.	When	an	error	act ion	is

encountered,	an	explicit 	error	node	with	the	rest 	of	the	input	as	its	leaves	will	need	to	be	included	as	the	outermost	rightmost

inner	node.	This	will	ensure	that	the	invariants	hold	even	for	non-accept ing	input.	The	conjecture	above	should	be	provable	with

the	help	of	the	invariants	on	the	parsing	skeleton	that	were	proven	above.

Conjecture	6	(Acceptance)	Let	G	be	a	grammar	and	Tab(G)	the	parsing	table	generated	by	the	algorithm	given.	If	w	2	L(G)	then

accept ing	(parser	(w,	Tab(G)))	implies	that	the	produc-

t ions	in	the	derivat ion	are	members	of	the	product ions	of	G	and	the	leaves	of	the	derivat ion	t ree	are	equal	to	w.	If	w	2	=	L(G)

then	error(parser	(w,	Tab(G)))	with	leaves(tree)	=	w	and	the	last 	branch	of	the	derivat ion	t ree	is	an	error	branch	with	the

remaining	input	at 	the	leaves.

These	last 	two	conjectures	should	hold,	but	they	may	not	be	necessary	for	the	proof	of	the	above	conjectures.	They	are	rather

di	cult 	to	specify	in	the	language	of	the	prover,	as	they	have	to	do	with	equivalence	classes	and	viable	pre	xes.

Conjecture	7	(Parse	state)	The	current	state	during	any	parse	denotes	the	equivalence	class

to	which	the	viable	pre	x	belongs.

Conjecture	8	(Shift)	When	the	parsing	table	for	the	current	state	and	lookahead	pair	calls

for	a	shift ,	then	the	path	through	the	automaton	de	ned	by	the	table	is	a	viable	pre	x,	but	no	su	x	of	the	path	(which	is	exact ly	the

symbol	stack)	is	a	handle.

No	discussion	of	the	proof	at tempts	of	these	conjectures	is	included	here,	as	none	were	successful.	This	is	an	area	in	which

much	more	work	must	be	invested	in	order	to	have	a	completely	mechanically	proven	correct 	compiler	front-end.

Chapter	7

Discussion

This	thesis	has	discussed	the	use	of	a	speci	c	theorem	prover,	NQTHM,	to	prove	theorems	about	program	implementat ions	for

algorithms	in	the	area	of	compiler	front-ends.	My	intent ion	has	been	to	demonstrate	that	the	process	of	verifying	a	compiler

front-end	which	incorporates	speci	cat ions	for	a	language	speci	ed	using	regular	expressions,	context-free	grammars,	and	other

speci	cat ion	techniques	is	possible	using	the	mechanical	theorem	prover	NQTHM.	It 	was	not	possible,	despite	an	enormous

investment	of	t ime	and	e	ort ,	to	fully	complete	a	proof	of	correctness	of	such	a	front-end	using	NQTHM,	although	proofs	for

many	important	aspects	of	the	process	were	indeed	possible.	The	process	of	scanning	has	been	divided	up	into	a	number	of

phases,	scanning	followed	by	a	number	of	token	transformat ion	phases.	Implementat ions	for	each	phase	have	been	proven

correct .	Scanning	uses	a	non-determinist ic	nite	state	automaton	to	recognize	pre-tokens.	The	generat ion	of	such	an	automaton

from	a	speci	cat ion	using	regular	expressions	has	not	been	proven	correct 	here,	although	an	algorithm	is	given	which	is	felt 	to	be

useful	for	such	a	proof.	A	parser	skeleton	has	been	implemented	and	many	invariants	proven	about	the	implementat ion.	A	parser

table	generator	has	been	implemented	in	the	logic,	and	part 	of	the	proof	(the	correctness	of	the	algorithm	that	converts	a	non-

determinist ic	nite	state	automaton	to	a	determinist ic	one)	has	been	conducted.	The	problem	of	t ransforming	the	concrete	parse

tree	into	an	abstract 	one	has	not	been	discussed	here	at 	all.	A	major	contribut ion	of	this	work,	beside	the	proofs	already

completed,	is	to	explain	some	of	the	aspects	of	the	proof	discovery	process	for	a	mathematically	well-know	subject 	area	that

were	unexpectedly	di	cult .	I	hope	that	the	next	generat ion	of	mechanical	provers	will	be	able	to	o	er	assistance	in	some	of	these

areas.	After	addressing	some	general	issues,	the	proof	e	ort 	expended	for	each	part 	of	the	proof	will	be	discussed	in	detail.

Then	some	considerat ions	for	the	use	of	the	prover	will	be	discussed:	the	experience	factor,	the	aspect	of	a	prover	\lore",	and	a

strategy	for	successfully	using	NQTHM	outside	of	Aust in.

7.1	General	Concerns

This	sect ion	addresses	some	of	the	general	concerns	in	conduct ing	a	mechanical	proof	with	NQTHM,	and	looks	at 	some	of	the

problems	that	contributed	to	increasing	the	e	ort .	149

150

CHAPTER	7.	DISCUSSION

At	the	present	t ime	(1996)	there	are	a	number	of	theorem	provers	available	which	perform	very	well	in	areas	that	NQTHM	has	di

cult ies	in	or	for	which	NQTHM	has	no	facilit ies	for	expression.	At	the	t ime	in	which	the	choice	of	a	theorem	prover	was	made

(1989),	there	was	a	large	collect ion	of	published	proofs	using	NQTHM	for	purposes	similar	to	my	goals	(for	example,	the	short

stack	discussed	in	BHMY89]).	It 	was	not	clear	at 	the	outset	that 	the	proofs	would	heavily	involve	set	theory	{	something

NQTHM	is	not	really	suited	to	use	{	but	it 	was	obvious	that	it 	was	extremely	powerful	as	a	rewriter	(even	for	seemingly

incomprehensible	terms)	and	very	ingenious	at 	using	induct ion.	Since	compiling	is	a	step-for-step	process	it 	was	thought	that

induct ion	would	be	especially	helpful	for	the	proofs.	From	the	present	standpoint ,	it 	would	be	perhaps	easier	to	conduct	compiler

front-end	proofs	using	a	system	such	as	PVS	ORS93,	ORS92]	or	VSE	HLS+	96]	that 	borrow	heavily	from	the	techniques	used

by	NQTHM,	but	with	added	strengths	in	speci	c	areas.	But	once	an	investment	of	t ime	has	been	made	in	learning	to	use	one

part icular	prover,	one	is	extremely	reluctant	to	switch	as	the	work	done	to	date	must	be	completely	reformulated.	If,	however,	a

proof	is	to	be	conducted	using	NQTHM,	it 	is	imperat ive	to	use	PC-NQTHM	to	develop	the	proofs.	Once	the	key	lemmata	have

been	discovered,	however,	work	should	be	invested	so	that	the	proof	will	also	succeed	using	NQTHM.	This	will	often	entail

proving	a	number	of	further	minor	rewrite	rules,	but	will	increase	the	understandability	of	the	proof.	A	PC-NQTHM	proof	is

extremely	technical	and	is	often	concerned	with	manipulat ions	on	terms	that	are	at 	a	part icular	posit ion.	An	NQTHM	proof	on	the

other	hand	will	be	a	series	of	lemmata	that	are	understandable	on	a	higher	level	of	abstract ion	with	the	odd	explicit 	instruct ion	on

usage	of	a	previous	rule,	and	thus	can	be	discussed	in	an	expository	manner,	as	I	have	done	in	this	thesis.	The	implementat ion

language	of	NQTHM	consists	of	side-e	ect 	free,	non-mutually	recursive	funct ions	which	must	adhere	to	the	de	nit ional	principle

discussed	in	Sect ion	2.6.2.	The	rst 	problem	that	arises,	apart 	from	learning	to	think	in	terms	of	recursive	funct ions,	is	the

terminat ion	quest ion.	A	measure	must	be	found	for	each	de	nit ion	which	decreases	on	each	recursive	call.	Many	of	the	funct ions

used	in	parsing	are	either	mutually	recursive	or	have	non-trivial	terminat ion	arguments.	It 	was	possible	to	get	around	the	mutual

recursion	problem	by	combining	funct ion	bodies,	taking	the	union	of	the	arguments,	and	using	a	ag	to	determine	which	funct ion

body	is	current.	However,	for	the	t ree	implementat ions	alone	was	it 	possible	to	prove	interest ing	theorems	about	funct ions	de

ned	in	this	manner.	It 	is	not	easy	to	conduct	an	induct ion	proof	where	every	other	call	to	the	funct ion	in	quest ion	has	a	di	erent

tag	value.	The	measure	for	such	mutually	recursive	funct ions	is	often	an	ordinal,	either	one	of	the	arguments	decreases	or

another	one	does.	One	funct ion	used	in	this	e	ort 	even	needed	a	three-component	ordinal.	Other	funct ions	such	as	the	-closure

or	the	main	parsing	funct ion	have	terminat ion	arguments	which	are	derived	from	some	property	of	a	combinat ion	of	parameters.

The	-closure	measure	can	at 	least 	be	easily	stated	by	including	the	set	of	all	states	as	an	argument,	and	taking	the	di	erence	in

length	between	the	current	set 	of	states	and	this	set 	of	all	states.	The	measure	for	the	parsing	funct ion	does	not	use	its

parameters	direct ly,	but 	remotely.	In	involves	two	propert ies	of	the	grammar,	a	parameter	to	the	parsing	funct ion,	which	was

used	to	produce	the	parsing	table.	It 	is	often	so	di	cult 	to	deal	with	terminat ion	that	one	is	tempted	to	just 	ignore	it 	and	look	at

part ial	correctness.	That	is,	to	get	on	with	proving	interest ing	theorems	and	not	just

7.1.1	Why	Choose	NQTHM?

7.1.2	Terminat ion

7.1.	GENERAL	CONCERNS

151

fussy	terminat ion	argument	lemmata.	Indeed,	by	introducing	a	clock	or	oracle	parameter	to	a	funct ion	that	is	counted	down	on

every	recursive	call,	one	can	get	even	the	most	complex	funct ions	to	be	accepted.	One	then	needs	to	demonstrate	that	there

exists	a	value	for	the	clock	so	that	terminat ion	is	by	\normal"	means	and	not	by	the	clock	running	out.	For	the	parsing	funct ion	this

is	possible	{	an	upper	bound	can	be	calculated.	For	the	FIRST	and	FOLLOW	sets	needed	for	table	generat ion,	one	would	have

to	rst 	generate	the	table	to	know	how	many	states	are	possible	k	steps	away	from	the	current	state.	However,	as	J	Moore

remarked	once	when	I	was	complaining	to	him	about	this,	\there's	no	such	thing	as	a	free	lunch".	Part ial	correctness	is	really	only

half	of	what	one	needs.	As	many	theorems	as	desired	can	be	proved	part ially	correct ,	but 	if	there	is	no	strong	argument	that	the

funct ions	involved	indeed	terminate,	then	the	theorems	are	rather	useless,	as	they	may	involve	contradict ions.	Certainly,	one	can

keep	careful	t rack	of	the	theorems	which	were	proven	using	lemmata	that	were	only	proven	part ially	correct ,	but 	this	is	easily

overlooked	when	the	desired	results	have	been	proven.	If,	however,	the	reason	given	for	expending	the	e	ort 	to	do	mechanical

veri	cat ion	is	to	have	completely	proven	correct 	software,	then	nothing	less	than	total	correctness	is	acceptable.	And	if	this	is	to

be	done,	then	it 	seems	sensible	to	take	care	of	the	terminat ion	arguments	rst ,	especially	as	they	might	o	er	insight	into	the

proper	scheme	for	conduct ing	an	induct ive	proof.

7.1.3	Type	and	Implementat ion	Problems

As	a	software	engineer	I	am	concerned	with	nding	good	representat ions	for	the	data	structures	and	algorithms	in	my	programs.

Encapsulat ing	parts	of	the	algorithms	so	that	they	are	readable	enables	me	to	more	easily	understand	the	algorithm,	and	to

make	necessary	changes	without	too	much	interference	in	other	areas.	I	like	to	use	named	selector	funct ions	such	as	sel-nexts

(first-entry	(table))	instead	of	ca	d	r	towers	and	I	am	perfect ly	willing	to	assign	types	to	my	parameters.	Encapsulat ion	of	non-

recursive	parts	of	an	algorithm	foiled	many	a	proof	at tempt.	After	proving	what	were	believed	to	be	the	key	lemmata	for	a	proof,

they	were	then	not	used	at 	all	in	further	proofs.	The	reason	was	that	the	non-recursive	funct ions	were	opened	up	by	the	prover,

and	then	all	the	lemmata	proven	on	the	non-recursive	funct ion	were	no	longer	applicable.	At 	t imes	one	can	disable	the	non-

recursive	de	nit ions,	but	there	were	often	cases	where	I	needed	the	funct ion	disabled	at 	one	point 	and	enabled	at 	another	during

the	same	proof.	This	was	only	possible	if	I	managed	to	guess	the	right 	USE	hint ,	or	if	I	used	PC-NQTHM	to	explicit ly	guide	the

proof.	It 	is	often	the	case	which	the	implementat ion	that	rst 	suggests	itself	to	you,	or	the	one	that	is	well-known	from	the

literature,	is	not	well	suited	for	veri	cat ion.	There	are	also	at 	any	step	in	the	implementat ion	process	many	ways	of	implement ing

an	algorithm	as	a	recursive	funct ion.	The	result 	can	be	accumulated	in	a	parameter	or	returned	as	the	return	value.	There	are	di

erent	ways	of	handling	the	terminat ion,	and	there	are	often	many	di	erent	ways	of	stat ing	the	same	thing.	Each	decision,

however,	will	have	a	profound	e	ect 	on	what,	if	anything,	can	be	proven	about	the	collect ion	of	funct ions.	Experienced	users	of

the	prover	have	a	good	\feeling"	for	how	to	express	things	(see	Sect ion	7.3.2)	{	one	must	implement	with	the	veri	cat ion	in	mind.	I

often	reached	a	point 	in	a	proof	where	it 	was	obvious	that	a	representat ion	was	causing	problems	{	I	needed	to	go	back,	change

the	representat ion,	and	see	if	the	proofs	could	be	replayed	up	unt il	this	point .	Usually	this	was	not	the	case.	Unfortunately,	one

cannot	\freeze"	the	proof	except	by	making	copies	of	the	proof	script 	or	speci	c	theorems	and	comment ing	the	troublesome

representat ions	out.	This	introduces	a	versioning	problem,	not	to	ment ion	the	confusion	which	can	be	introduced	into	a	script 	by

doing	this	a	number	of	t imes.	When	one

152

CHAPTER	7.	DISCUSSION

representat ion	has	then	been	shown	to	be	useful	for	one	theorem	and	a	di	erent	representat ion	for	another,	and	they	do	not

quite	t 	together,	an	impasse	occurs	and	a	third	representat ion	must	be	at tempted	that	can	accomodate	both.	At	t imes	such

situat ion	occurs	because	of	a	simple	problem	such	as	the	same	name	being	used	for	two	di	erent	funct ions,	but	it 	can	also

happen	that	a	rewrite	rule	used	for	the	one	representat ion	will	also	rewrite	a	port ion	of	the	other	representat ion,	rendering	other

rules	non-applicable.	One	example	that	is	discussed	at 	length	in	the	automaton	proof	(in	Sect ion	3.2.6)	is	the	implementat ion	for

the	acceptance	algorithm.	Amazingly,	ve	di	erent	versions	were	tried	before	the	main	theorems	could	be	proven.	Often	it 	is	the

implementat ion	that	is	\ugliest"	from	an	engineering	standpoint ,	that 	is,	one	which	is	grossly	ine	cient	or	which	calculates

complicated	intermediate	results	on	every	call,	that 	is	useful	for	a	proof.	Of	course,	one	can	then	prove	an	opt imized	version

equivalent	to	the	cumbersome	one,	but	one	tends	to	express	algorithms	in	a	space-	and	t ime-saving	way.	To	be	successful	with

NQTHM	this	urge	must	be	suppressed.	A	special	representat ion	problem	concerns	the	construct ion	of	data	structures	and	the

types	of	parameters.	The	language	of	NQTHM	is	type-less,	so	I	often	used	shells	to	construct 	what	I	believed	were	just 	records

with	typed	components	and	proceeded	to	extend	what	I	thought	was	an	abstract 	data	type	with	funct ions	which	operated	on

that	type.	Using	any	sort 	of	restrict ion	on	components	not	only	slows	the	proof	down,	but	it 	can	cause	obvious	ident ity	lemmata

to	be	untrue,	as	my	rst 	at tempt	to	use	con	gurat ions	with	components	of	stack	type	showed.	As	the	prover	does	not	know	the

type	of	the	component	selected,	since	it 	usually	does	not	know	the	type	of	the	variable	from	which	it 	is	select ing,	many	subgoals

will	be	generated	or	hypotheses	included	to	ascertain	that	the	parameters	are	indeed	of	the	needed	types.	I	call	this	\type

checking	at 	proof	t ime",	as	opposed	to	type	checking	at 	de	nit ion	t ime.	One	can	often	supply	a	type	for	a	parameter,	but 	there	is

no	way	to	express	this	in	the	logic.	This	type	checking	at 	proof	t ime	can	only	be	avoided	by	including	an	extra	if	into	the	bodies	of

funct ion	de	nit ions	and	if	any	of	the	parameters	are	not	of	proper	\type"	by	returning	an	error	value.	This	clut ters	the	proof	rather

unnecessarily,	and	can	even	lead	to	a	situat ion	where	something	that	would	be	very	easy	to	state	using	type	restrict ions	is

extremely	di	cult 	to	state	in	the	language	of	the	prover	(for	example,	the	roots	invariant	in	Sect ion	5.3.3).	A	solut ion	to	this	might

be	to	o	er	\part ial	types"	{	if	the	prover	is	given	a	type,	it 	should	be	used.	But	there	should	be	the	possibility	of	having	untyped

parameters,	such	as	the	parameter	in	the	t ree	module	that	is	somet imes	a	t ree	and	sometimes	a	list 	of	t rees,	for	cases	in	which

a	more	polymorphic	type	is	needed.	Another	reason	that	some	sort 	of	typing	would	be	useful	is	for	catching	silly	implementat ion

or	type	errors.	One	can	confuse	cons	and	append,	or	get	parameters	in	the	wrong	order.	One	major	problem	in	the	automaton

proof	was	that	the	parameters	(state,	symbol,	nexts)	were	in	the	wrong	order	at 	one	place.	Of	course,	the	prover	caught	this

and	refused	to	prove	the	theorem,	but	the	subgoals	did	not	suggest	the	reason	for	the	problem	and	I	spent	days	proving	all	sorts

of	useless	lemmata.	Any	language	with	types	would	have	not iced	that	a	symbol	was	being	used	where	a	list 	was	expected,	and

vice	versa.	There	are	a	number	of	theorem	provers	which	make	use	of	types,	for	example	PVS	and	HOL	ORS92,	Gor85].

Perhaps	some	future	theorem	prover	will	be	able	to	combine	the	strength	and	the	induct ion	mechanism	of	NQTHM	with	the

usage	of	types.	I	do	not	believe	that	it 	is	necessary,	however	(as	in	Isabelle	Pau90,	Pau93,	Pau94])	for	the	theorem	prover	to

deduce	the	types.	That	is	something	that	the	user	of	the	system	can	easily	note	down.

7.1.	GENERAL	CONCERNS

153

7.1.4	Sets

A	major	shortcoming	of	NQTHM	is	the	absence	of	set 	theory.	Many	theorems	in	the	literature	make	use	of	set 	theory	in	their

proofs.	Membership,	set 	equality,	union,	and	intersect ion	are	very	common.	The	automaton	proof	also	needed	power	sets.	Not

only	were	there	misunderstandings	about	how	the	built -in	funct ions	member	and	union	worked	and	my	own	subsetp	not	really

working	as	expected,	but	the	art i	ces	needed	for	modeling	sets	in	lists	often	presented	unexpectedly	high	obstacles	to	a	proof.

The	normalizat ion	used	in	the	automaton	proof,	order,	caused	an	enormous	amount	of	e	ort 	to	be	expended	on	what	should

have	been	a	completely	t rivial	proof	involving	set	equality.	Often,	of	course,	full	set 	theory	was	not	necessary.	The	only	thing

needed	for	a	proof	was	whether	or	not	something	was	a	member	of	a	list ,	not 	that 	it 	was	in	addit ion	the	only	member.	But	there

were	cases	such	as	the	construct ion	of	the	item	sets,	where	proper	sets	are	really	needed	on	two	di	erent	occasions.	I	was

using	one	of	the	set	libraries	at 	one	point 	in	a	proof	when	I	not iced	that	using	the	library	was	causing	di	cult ies	{	all	sorts	of	silly

subgoals	were	being	generated	just 	because	there	were	rewrite	rules	around	that	matched.	This	exploded	the	proof	search

space.	It 	was	possible	to	carry	on	by	working	in	what	the	researchers	at 	CLInc	call	\Bevier	mode"1,	where	all	funct ions	are

disabled	and	then	only	the	ones	needed	are	enabled.	This	works	well,	but 	I	am	often	too	opt imist ic	to	work	in	this	way.	I	tend	to

hope	that	the	prover	will	\see"	what	it 	needs	itself	and	do	not	want	to	keep	inspect ing	subgoals	to	see	what	addit ional	lemmata

need	enabling.	Also,	when	a	library	is	used	which	someone	else	has	writ ten,	it 	is	not	immediately	obvious	which	rules	are

available.	Some	such	tool	as	the	show-rewrites	in	PC-NQTHM	would	be	useful,	although	one	would	like	to	see	it 	show	all	the

rewrite	rules	de	ned	on	the	current	major	term,	not	just 	the	ones	that	can	be	used	at 	this	moment.	That	would	help	one	to	see

the	direct ions	that	the	proof	can	take.	If	this	could	be	rewrit ten	to	that,	then	this	other	rule	will	work.	In	a	private	communicat ion

just 	before	the	complet ion	of	this	manuscript ,	Natarajan	Shankar,	one	of	the	authors	of	the	theorem	prover	PVS,	sent	me	his

proof	of	the	automaton	equivalence.	Since	he	has	full	set 	theory,	existent ial	quant i	cat ion	and	typed	parameters	at 	hand,	the

ent ire	proof	(without	-t ransit ions,	however)	collapses	to	just 	one	induct ion,	the	one	Rabin	and	Scott 	actually	used	in	their	proof.

7.1.5	Axioms

It 	is	very	tempt ing	to	introduce	axioms	into	a	script 	when	the	prover	just 	will	not 	assent	to	an	obvious	truth.	It 	is	also	exceedingly

dangerous.	It 	is	very	easy	to	write	axioms	that	are	inconsistent	or,	because	they	are	missing	a	hypothesis,	are	just 	plain	wrong.

NQTHM	is	very	good	at 	using	inconsistent	axioms	to	prove	anything.	Just 	about	every	t ime	when	NQTHM	would	\get"	a	proof

immediately,	it 	was	because	I	had	inconsistent	axioms.	The	problem	with	axioms	is	not	in	the	major	statement	of	the	axiom,	but

rather	in	the	ne	points:	the	variables	upon	which	it 	is	de	ned,	whether	it 	is	actually	t rue	for	degenerate	cases,	and	so	on.	Axioms

are	quite	useful,	however,	for	probing	a	proof:	if	the	main	theorem	can	be	proven	on	the	basis	of	the	axioms,	then	one	must	only

prove	the	axioms,	and	the	proof	is	nished.	But	this	step	is	crucial	{	the	eliminat ion	of	axioms	must	have	a	high	priority.	If	for	some

reason	this	cannot	be	done,	the	very	least 	one	can	do,	after	convincing	oneself	that 	the	axioms	are	indeed	correct 	as	stated,	is

to	at tempt	to	prove	some	\sanity	check"	lemmata.	These	are	either	ones	which	must	fail	(or	else	there	is	a	contradict ion	in	some

axiom	statement)	or	must	succeed	(because	they	concern	an	obvious	property	of	funct ions	obeying	these	axioms).

1

After	the	methodology	and	a	set	of	macros	which	support 	it ,	which	were	developed	by	William	R.	Bevier.

154

CHAPTER	7.	DISCUSSION

As	ment ioned	a	number	of	t imes	in	this	thesis,	many	theorems	in	mathematics	make	use	of	existent ial	quant i	cat ion,	often

without	stat ing	it 	explicit ly.	Even	when	a	proof	based	on	an	existent ial	quant i	cat ion	has	been	found,	one	st ill	has	to	demonstrate

by	means	of	a	witness	funct ion	that	such	a	thing	actually	exists.	Although	NQTHM-1992	now	has	Skolemized	existent ial	quant i

cat ion,	I	did	not	use	it 	because	I	could	not	come	up	with	a	statement	for	the	existent ial	quant i	cat ion	I	had	in	mind	that	would	be

useful	for	proof.	This	is	surely	just 	a	\t raining	problem".	I	would	hope	that	a	number	of	di	erent	worked	examples	of	the	use	of	this

technique	would	be	available,	since	existent ial	quant i	cat ion	is	such	an	important	part 	of	predicate	logic.	For	the	most	part 	having

rst 	order	logic	available	for	proof	was	su	cient.	There	are	three	areas,	however,	where	having	some	sort 	of	second	order	tool

would	have	been	helpful.	The	rst 	area	was	in	the	scanner.	One	of	the	main	theorems	for	split 	was	that	the	longest	accept ing	pre

x	was	split 	o	at 	every	call.	The	proof	would	not	have	been	as	complicated	if	a	parameter	could	have	been	a	predicate	P	on

character	sequences.	The	funct ion	that	nds	the	longest	pre	x	will	nd	the	longest	pre	x	with	property	P,	no	matter	how

complicated	P	is.	Thus	the	problems	associated	with	correct ly	implement ing	a	funct ion	to	determine	the	P-ness	of	a	sequence

could	then	be	separated	from	the	problems	associated	with	nding	the	longest	pre	x	with	such	a	property.	The	second	area	was

in	the	parser	con	gurat ion	where	there	were	three	stacks.	It 	would	have	been	useful	either	to	be	able	to	type	the	stack

elements,	or	to	have	a	predicate	stack-of	that 	takes	a	stack	and	a	recognizer	as	a	parameter.	With	just 	rst 	order	logic,	di	erent

funct ions	stack-of-t rees,	stack-of-symbols,	and	stack-of-numbers	had	to	be	de	ned,	and	then	proofs	of	the	interact ions	of	each

with	other	funct ions	such	as	from-bottom	had	to	be	proven.	Of	course,	since	the	funct ions	were	pract ically	ident ical,	the	proofs

could	be	\re-used"	by	cut&paste&rename.	The	third	area	will	surely	be	relevant	for	the	parser	generator	proof.	Since	the	goal	is

to	prove	propert ies	of	the	results	produced	by	running	the	result 	of	a	parser	generator	and	not	propert ies	of	the	rst 	result

direct ly,	being	able	to	use	some	sort 	of	second-order	argument	would	be	useful.	I	am	not	concerned	so	much	with	speci	c

propert ies	of	the	parser	which	is	generated,	as	long	as	its	results	have	the	property	of	obtaining	a	proper	derivat ion	for	an	input

token	sequence.

7.1.6	Existent ial	Quant i	cat ion

7.1.7	Second	Order

7.1.8	Script 	Writ ing

The	editor	EMACS,	writ ten	by	Richard	M.	Stallman	from	the	Free	Software	Foundat ion	Fou94],	o	ers	a	good	environment	for

using	NQTHM,	as	one	can	have	the	prover	in	one	bu	er	and	the	proof	script 	in	another	and	as	many	other	bu	ers	open	as	are

needed.	There	are	macros	available	for	easily	submit t ing	events	to	the	prover2,	and	one	can	also	program	funct ions	in	Lisp	to

gain	informat ion	about	the	proof.	There	are,	however,	st ill	di	cult ies	involved.	Trying	to	keep	a	proof	script 	replayable	is	very	di

cult ,	as	it 	is	never	developed	top-down.	One	is	constant ly	working	\in	the	middle"	of	the	script .	One	writes	down	the	de	nit ions

and	then	the	theorem	to	be	proven,	and	when	the	theorem	cannot	be	proven,	one	moves	up	and	tries	to	prove	some

intermediate	lemmata.	When	they	do	not	prove	one	can	move	up	again,	or	switch	to	another	intermediate	lemma,	or	add	a

hypothesis,	or	completely	restate	the	theorem	to	be	proven.	It 	is	hard	to	keep	track	of	which	lemmata	were	the	key	ones,	which

have

2

nqthm-mode.el	is

available	at 	ht tp://www.t fh-berlin.de/

weberwu/nqthm/nqthm-mode.el

7.2.	PROOF	EFFORT

155

actually	been	proven	and	which	were	false	starts,	etc.	I	developed	a	comment ing	technique	for	remembering	the	status	of	each

event	in	the	script ,	but 	often	enough	I	would	forget	a	comment	and	then,	when	cleaning	up	the	script ,	delete	an	important

lemma.	I	also	kept	a	\breakpoint"	in	my	scripts,	a	term	(high	t ide),	that 	divides	proven	and	useful	theorems	from	non-proven	or

dubious	theorems.	The	script 	can	then	be	submit ted	to	the	prover	and	will	stop	when	the	high	t ide	term	is	encountered.	Clean	up

is	also	a	di	cult 	task.	I	do	not	give	the	intermediate	lemmata	meaningful	names	unt il	they	have	been	shown	to	be	useful.	Then	I

t ry	and	move	the	lemmata	up	to	be	close	to	their	de	nit ions,	for	example	a	theorem	about	the	interact ion	between	foo	and

append	should	be	near	the	de	nit ion	of	foo.	But	this	can	cause	previously	successful	proofs	to	become	unprovable,	as	a	rewrite

order	is	now	reversed	or	even	because	a	name	change	in	the	theorem	will	cause	it 	to	be	considered	at 	a	di	erent	point 	in	the	the

process.	Some	sort 	of	hypertext-oriented,	graphical	interface	would	be	desirable.	That	would	make	comment ing	out	useless

bits	of	a	proof	easier,	and	one	could	at tempt	various	paths	through	proven	theorems	by	way	of	links.	I	have	tried	to	part ially

realize	this	by	breaking	the	proofs	up	into	theory	bits	(for	example,	grammars,	lists,	t rees,	sets	and	such).	These	theories	are

enabled	at 	the	start 	of	a	port ion	of	a	proof	kept	in	a	separate	le,	much	like	declaring	the	needed	packages	in	an	Ada	program	by

using	a	with-clause.	If	a	theory	is	not	in	the	data	base	at 	the	moment,	the	prover	will	halt 	at 	the	enabling	statement	and	the

init ializat ion	le	can	be	amended	to	include	the	theories	needed.	It 	would	also	help	in	developing	a	proof	to	be	able	to	obtain	a	list

of	rewrite	rules	de	ned	on	a	term	at	the	click	of	a	mouse,	or	to	have	a	graphical	proof	t ree	showing	the	lemma	dependencies	such

as	in	the	Veri	cat ion	Support 	Environment	VSE	HLS+	96].	Another	thing	that	would	facilitate	a	proof	e	ort 	would	be	a	sort 	of

failed	proof	postmortem	that	would	show	how	the	subgoals	were	put	together	and	which	lemmata	were	tried	and	did	not	help.

PC-NQTHM	o	ers	some	of	this,	but 	it 	seldom	o	ers	the	exact	same	case	split 	as	NQTHM.	A	sort 	of	\rewrite	movie"	that 	would

step	through	the	rewrit ten	terms	would	also	be	helpful	for	cases	such	as

(LONG-INVOLVED-TERM-I-THOUGHT-WAS-CORRECT)	opens	up	using	REWRITE-1,,	REWRITE-255	(<-	many

names	here)	obviously,	to	(SURPRISINGLY-SHORT-FALSE-TERM	...)

in	which	a	perfect ly	logical	term	that	seems	to	be	correct 	\obviously"	opens	up	to	a	clearly	false	one.

7.2	Proof	E	ort

I	want	to	t ry	and	give	an	overview	of	the	e	ort 	involved	in	each	individual	proof	step,	and	discuss	some	of	the	false	starts

involved	in	each.	The	t ime	invested	is	di	cult 	to	judge,	as	I	moved	to	another	city	for	personal	reasons	a	year	and	a	half	into	this

thesis	work.	There	I	could	only	work	about	two	days	a	week	on	the	proof,	and	for	the	past	three	years	I	have	been	unable	to

devote	more	than	a	day	a	week	to	the	proof.	This	cripples	work	immensely,	because	I	have	to	rst 	remember	where	I	was	the

last 	t ime	before	cont inuing.	The	nal	push	for	the	parser	theorem	came	when	I	was	able	to	spend	two	weeks	full	t ime	on	this	work

after	having	spent	six	years	on	and	o	working	with	NQTHM

156

CHAPTER	7.	DISCUSSION

The	amount	of	t ime	necessary	for	complet ing	the	proof	of	automaton	equivalence	was	enormous.	I	spent	six	weeks	in	the

summer	of	1993	at 	Computat ional	Logic	with	the	intent ion	of	proving	11	theorems	correct 	in	order	to	show	that	an

implementat ion	of	a	parser	generator	was	correct .	The	rst 	four	weeks	ended	up	being	devoted	to	learning	more	about	how	the

prover	works	and	proving	exercises	not	direct ly	related	to	the	proof	e	ort .	The	last 	two	weeks	(12	full	working	days)	were

devoted	just 	to	the	automaton	equivalence	proof.	William	Young	worked	occasionally	over	one	of	the	weeks,	proving	a	version

using	the	existent ial	quant i	cat ion	event.	I	spent	another	25	days	back	in	Berlin	working	on	the	proof.	As	things	began	to	fall

together,	the	speed	of	the	proof	e	ort 	picked	up.	One	gets	more	accustomed	to	proving	things	the	NQTHM	way	on	paper	rst ,

formulat ing	axioms	to	decompose	the	proof,	and	repeat ing	on	the	axioms	{	one	learns	to	resist 	the	temptat ion	to	prove

something	just 	because	it 	looks	easy	to	prove.	One	must	constant ly	ask	{	is	this	on	my	crit ical	path?	If	not ,	it 	is	not	worth

wast ing	t ime	on	it .	All	in	all	there	were	many,	many	theorems	proven	that	were	eventually	determined	to	be	irrelevant.	The	nal

version,	with	33	de	nit ions	and	67	lemmata,	does	not	contain	even	a	quarter	of	the	lemmata	proven	during	the	course	of	the

attempt.	This	makes	it 	hard	to	nd	a	measure	for	the	di	culty	of	a	proof,	especially	as	this	is	intricately	t ied	to	the	prover	used.	In

Shankar's	proof	using	PVS	on	one	of	the	automata	equivalence	theorems,	he	used	seven	type	de	nit ions,	ve	funct ion	de	nit ions

and	just 	one	lemma	that	was	proven	in	six	steps	by	rewrit ing	and	induct ion.

7.2.1	NFSA	DFSA

7.2.2	Scanner

Split

I	rst 	spent	quite	a	while	at tempt ing	to	implement	a	scanner	generator	that 	would	generate	a	scanner	from	a	regular	expression

de	nit ion.	After	giving	up	on	that	(and	unfortunately	the	t ime	spent	on	that	was	not	logged),	I	worked	on	the	proof	of	an

interpret ing	scanner	that	interpreted	regular	expressions	over	an	eight	month	period.	This	was	not	successful,	and	the	scanner

proof	was	laid	to	rest 	while	I	worked	on	parsing.	Two	years	later	when	I	decided	to	revive	the	scanner	I	was	now	able	to

completely	redo	the	de	nit ions	and	lemmata	in	just 	16	hours	over	four	days.	There	was	of	course	an	error	in	the	previous

implementat ion:	plus	after	concatenat ion	was	implemented	wrong.	So	the	prover	had	actually	been	right 	when	it 	refused	to

prove	my	\t rivial"	lemmata!	Even	this	proof	turned	out	to	be	wrong,	as	one	of	the	predicates	in	the	speci	cat ion	was	too	strong.	If

the	scanner	returned	a	pre	x	it 	was	a	recognizing	pre	x	and	it 	was	longest	according	to	the	predicate	statement,	but	there	could

have	been	a	longer	pre	x,	as	discussed	in	the	example	in	Sect ion	4.2.7.	Completely	redoing	the	scanner	to	use	automata

needed	10	days	to	discover	the	proof	and	one	to	clean	up.

Token	Transformat ions

These	proofs	were	extremely	t ime-consuming,	something	that	cannot	be	seen	in	the	sleek	and	simple	proofs	presented	in

Sect ion	4.3.	It 	was	very	di	cult 	to	formulate	the	speci	cat ion	for	the	indentat ion	removal	t ransformat ion,	and	even	after	a	good

expression	for	the	desired	relat ionship	was	found,	it 	was	even	more	di	cult 	to	prove	that	an	implementat ion	of	the	indentat ion

changer	corresponded.	At	least 	four	completely	di	erent	methods	of	implement ing	the	indentator	or	the	correspondence

predicate	were	exhaust ively	t ried,	and	over	600	lemmata	were	either	proven	or	at tempted	without	being	able	to	prove	the	main

theorem.

7.2.	PROOF	EFFORT

157

One	version	that	seemed	to	prove	turned	out	to	have	a	contradict ion	in	the	hypothesis.	This	was	discovered	much	later,	when	a

similar	proof	was	being	at tempted	and	I	wanted	to	see	how	exact ly	that 	one	had	gone	through.	Studying	the	output	of	the

prover	showed	that	indeed	no	induct ion	was	done	{	just 	rewrit ing	using	the	de	nit ions	from	the	hypothesis	and	none	of	the

intermediate	lemmata	had	given	the	proof.	However,	by	this	t ime	I	was	versed	enough	in	the	prover	to	x	the	problem	in	a	day.

The	version	that	nally	worked	separated	the	concerns	of	the	indentator	on	a	slight ly	more	abstract 	level	than	had	been	tried

before,	and	exposed	in	doing	so	the	problem	{	since	I	was	using	the	integers	library	I	had	two	representat ions	for	zero,	0	which

would	produce	a	SI	token	and	(minus	0)	which	would	produce	nil.	The	transformat ion	of	integers	from	a	posit ional	notat ion	to	a

number	representat ion	also	had	an	error	which	I	would	call	a	\glue	error".	The	proof	depended	on	each	character	in	the	posit ional

notat ion	being	a	digit .	This	had	been	expressed	as	numberp	in	the	speci	cat ions,	and	the	proofs	went	through	smoothly.

However,	the	posit ional	notat ion	did	not	consist 	of	numbers	represent ing	digits	but	of	the	ASCII	values	for	the	digit 	characters,

and	of	course	both	are	numberps.	I	had	believed	that	a	previous	transformat ion	funct ion	had	taken	care	of	this,	and	since	each

transformat ion	had	been	proven	correct 	together,	it 	was	a	surprise	to	see	that	they	did	not	work	together	as	expected.	I	ended

up	having	to	split 	this	t ransformat ion	into	an	ASCII-to-digit 	converter	and	then	the	posit ional	notat ion	converter.	This,	too,	took

only	a	day	once	the	problem	was	recognized.	The	proof	e	ort 	for	the	t ransformat ion	funct ions	is	given	in	the	table	below.

Funct ion	De	nit ions	Lemmata	Days	Work	toktrans1	3	2	3	toktrans2	5	1	3	toktrans3	6	2	3	toktrans4	23	23	13	toktrans5	7	5	4

toktrans6	9	5	6	toktrans7	(current	version)	18	21	24	From	the	old	proof	scripts	st ill	in	my	account	I	found	252	discarded	lemmata

for	the	indentator	(toktrans7)	proof	alone.

7.2.3	Parser

The	parser	proof	itself	has	turned	out	to	be	at 	least 	an	order	of	magnitude	more	di	cult 	and	t ime-consuming	as	was	expected	at

the	outset	of	this	research.	It 	is	hard	to	pin	down	the	reasons	for	this	{	once	the	proofs	are	worked	out,	they	are	simple.	More

than	once	a	failed	proof	demonstrated	that	the	implementat ion	was	incorrect .	Examining	a	subgoal	discovered	a	degenerate

case	for	which	the	theorem	did	not	actually	hold.	The	proof	of	the	leaves	invariant	in	Sect ion	5.3.2	was	such	a	case.	If	the

parsing	table	were	to	be	in	error	and	demand	a	reduct ion	that	was	larger	than	there	were	trees	on	the	tree	stack,	and	this

reduct ion	happened	to	be	the	axiomat ic	product ion,	then	the	input	would	be	accepted	without	a	parse	tree	being	constructed

correct ly.	The	proof	of	the	nodes	invariant	(Sect ion	5.3.4)	was	the	last 	one	at tempted	before	terminat ing	the	proof	e	ort .	It

demonstrated	a	major	problem	with	the	ent ire	method	of	invent-andverify:	deep	into	the	proof	I	discovered	that	an	unfortunate

choice	of	representat ion	prevented	the	proof	from	going	through	{	it 	was	not	possible	for	the	prover	to	see	that	a	left 	hand	side

of	a	product ion	could	never	be	a	token.	According	to	the	speci	cat ions,	the	left 	hand	side	is

158

CHAPTER	7.	DISCUSSION

a	non-terminal	symbol.	But	I	cannot	state	this,	and	thus	a	left 	hand	side	is	not	type	restricted	and	could	indeed	have	any	type,

including	being	a	token.	There	might	be	a	possibility	to	completely	redo	the	way	in	which	a	node	is	selected	for	use	in

construct ing	a	t ree,	but	this	would	entail	an	enormous	amount	of	work,	and	even	then	one	cannot	be	sure	that	this	new

representat ion	would	not	itself	have	some	subt le	degenerate	case	that	prevents	the	proof	from	going	through.	Unraveling	the

proof	and	redoing	all	the	steps,	including	the	brit t le	PCNQTHM	ones,	will	have	no	change	on	what	the	parser	is	actually	doing.	It

just 	changes	how	the	trace	elements	of	the	con	gurat ion	are	constructed	to	help	convince	us	that	the	parser	works	correct ly.	So

the	proof	was	abandoned	at 	this	point .	The	parser	is	not	exact ly	e	cient.	In	order	to	have	any	hope	of	proving	something	about

the	parser,	it 	had	to	explicit ly	construct 	many	intermediate	results,	and	the	scanning	that	must	precede	the	parsing	has	an

exponent ial	run-t ime	behavior.	Obtaining	an	actual	parse	tree	from	this	for	more	than	a	t rivial	program	is	a	nite	task	{	it 	actually

terminates,	but	is	not	useful.	A	68	character	program	in	PLR	0	took	almost	an	hour	to	run,	a	75	character	program	almost	2

hours.	I	have	not	dared	to	t ry	and	parse	Bett ina	Buth's	10,000	character	example	program3	using	all	of	the	PLR	0	construct ions!

Many	of	these	are,	of	course,	blanks	in	indentat ions	once	the	scanner	is	nished,	the	parsing	itself	should	not	take	that	much	t ime.

Thus,	opt imized	scanners	and	parsers	must	be	implemented	and	proven	equivalent	to	the	ones	given	here,	so	that	it 	is	possible

to	actually	use	such	programs.

7.2.4	Parser	Generator

There	were	33	de	nit ions	formulated	about	a	parser	table	generator.	It 	took	ve	days	to	get	the	de	nit ions	accepted	and	for	the

result ing	parsing	table	for	PLR	0	to	be	exact ly	the	same	as	the	one	generated	by	yacc.	No	theorems	were	proven,	but	rather,	it

was	demonstrated	that	it 	is	possible	to	implement	such	a	table	generator	in	the	restricted	language	of	the	theorem	prover.	The

main	problems	were	nding	representat ions	for	the	item	sets,	construct ing	the	recursive	funct ions,	and	proving	their	terminat ion	{

usually	with	the	bludgeon	of	an	explicit 	count-down	clock.	The	construct ion	of	funct ions	for	first 	and	follow	was	eventually

possible	with	the	help	of	the	clock,	but	from	the	looks	of	the	funct ions	I	do	not	believe	that	I	will	ever	be	able	to	prove	anything

useful	about	them	in	this	form.	The	hardest	part 	in	construct ing	these	funct ions	had	nothing	to	do	with	a	proof	at tempt.	Even

though	the	construct ion	funct ions	are	given	in	many	books	on	parsing,	I	could	not	see	why	exact ly	this	method	worked	{	but	I	had

to	understand	this	in	order	to	formulate	a	predicate	for	the	method	working	correct ly.	Only	after	I	had	constructed	the	LR(1)

table	for	PLR	0	by	hand4	did	I	actually	see	why	the	table	looked	as	it 	did	{	just 	studying	the	example	expression	grammar	had

not	been	enough.

7.3	Considerat ions	of	Prover	Use

In	this	sect ion	I	want	to	present	some	of	the	considerat ions	on	the	use	of	NQTHM	that	I	have	collected	over	the	years.	After

discussing	the	\Matt 	Factor",	a	list 	of	some	of	the	prover	lore	gleaned	from	experienced	proof	directors	is	presented	followed	by

a	strategy	for	using	NQTHM	outside	of	Aust in.

The	automaton	needed	to	be	drawn	on	a	6m	x	1.5m	piece	of	packing	paper,	as	there	are	more	than	100	states!

3	ht tp://www.t fh-berlin.de/	weberwu/diss/events/pl0r/large.pl0r	4

7.3.	CONSIDERATIONS	OF	PROVER	USE

159

7.3.1	The	\Matt 	Factor"

One	of	the	keys	to	successful	use	of	NQTHM,	apart 	from	a	good	knowledge	of	logic	and	formal	proof,	is	experience	in	using	the

prover.	Since	there	are	so	very	many	ways	of	expressing	the	funct ions	and	theorems,	it 	is	very	di	cult 	for	a	beginner	to	know

exact ly	how	to	begin	and	how	to	construct 	a	proof	for	a	theorem	that	NQTHM	cannot	get	on	its	own.	I	coined	the	term	\Matt

Factor"	to	describe	how	well	the	person	at tempt ing	the	proof	is	acquainted	with	the	system.	Matt 	Kaufmann,	a	CLInc

researcher	who	added	on	the	PCNQTHM	interface,	knows	all	of	the	nooks	and	crannies	of	NQTHM,	along	with	being	a	logician

by	trade.	In	working	on	a	lit t le	exercise5	I	found	that	Matt 	could	develop	the	proof	in	5	minutes.	Yuan	Yu,	who	wrote	his	thesis	on

the	proof	of	a	Motorola	chip	with	the	prover	BY91],	reported	needing	only	a	few	hours	to	solve	the	same	exercise.	I	worked	for	3

days	before	giving	up,	as	I	could	not	see	what	sort 	of	lemma	the	prover	needed.	So	when	trying	to	measure	how	much	t ime	is

needed	to	conduct	a	proof,	the	experience	of	the	proof	conductor	{	theorem	prover	author,	NQTHM	user	working	in	Aust in,

NQTHM	user	who	has	visited	Aust in,	or	person	who	has	just 	read	the	handbooks	{	must	be	taken	into	considerat ion,	as	the	t ime

needed	increases	exponent ially	with	the	distance	from	Aust in,	so	to	say.	There	is	an	immensely	steep	learning	curve	involved	in

learning	to	use	the	prover	e	ect ively,	although	this	problem	is	not	only	with	NQTHM	but	with	any	prover.	Some	attempts	are

being	made	to	construct 	exercises	or	to	write	up	model	proofs	for	teaching	the	use	of	the	prover,	but	I	do	not	think	it 	will	be

possible	to	quickly	t rain	engineers	to	use	NQTHM	to	prove	non-trivial	theorems.	It 	is	not	impossible	{	many	have	learned	how	to

use	it ,	especially	since	the	handbooks	(BM88,	BM79])	are	so	excellent 	{	but 	I	do	not	believe	that	NQTHM	will	be	the	VisiCalc

that	brings	mechanical	theorem	proving	to	the	masses.

7.3.2	The	Lore	of	the	Prover

When	one	observes	an	experienced	proof	director	at 	work	and	asks:	\Why	are	you	doing	this	that 	way?	",	one	often	hears	good

reasons	for	doing	so.	At	the	University	of	Texas	in	Aust in	and	at 	Computat ional	Logic	there	is	a	vast	body	of	such	informat ion

that	is	most ly	in	the	heads	of	the	researchers.	Boyer	and	Moore	have	some	helpful	hints	in	their	handbook	BM88],	but	many	of

these	reasons	are	passed	from	researcher	to	researcher	over	co	ee	or	when	working	together	on	some	problem.	I	use	the	term

\lore"	for	this	oral	history	of	successful	prover	usage,	and	o	er	the	lore	gleaned	from	my	notebooks.	One	must	be	very	careful	in

naming	funct ions	not	to	suggest	through	the	name	a	property	that	is	not	actually	implemented	in	the	funct ion.	Avoid	type-

restrict ions	in	shells	at 	all	costs!	The	equality	axioms	will	explode	and	the	prover	will	disappear	on	you.	Instead,	permit

everything,	then	write	a	separate	predicate	that	checks	the	types	of	each	eld.	Shells	were	not	writ ten	to	provide	abstract 	data

types.	However,	it 	is	good	to	use	shells,	as	the	destructor	and	constructor	funct ions	are	not	expanded	to	the	internal	structure	in

proofs,	providing	better	reading	of	the	proof.	An	exasperat ing	corner	is	that 	the	prover	will	not 	open	up	recursive	de	nit ions	or

prove	subrules	about	a	hypothesis	so	that	it 	can	see	that	the	hypotheses	are	contradictory.	One	can	use	PC-NQTHM	to	direct

the	contradict ion	proof,	t ry	some	hints,	or	t ry	and	formulate	a	rewrite	rule	that	demonstrates	this	contradict ion.

This	is	the	subsequence	exercise	that	is	used	in	the	leaves	invariant	proof.	This	and	other	exercises	can	be	found	in	a	select ion

of	\Etudes",	for	learning	to	use	NQTHM	that	I've	collected	at

5

http://www.t fh-berlin.de/	weberwu/nqthm/etudes.html

160

CHAPTER	7.	DISCUSSION

Never	use	a	lemma	that	has	(CAR	x)	or	(CDR	x)	as	a	subterm	of	the	term	to	be	rewrit ten,	as	the	destructor	eliminat ion	will	never

present	a	term	in	that	form	to	the	rewriter.	Separate	concerns!	It 	is	often	easier	to	prove	two	separate	funct ions	than	to	do	two

things	at 	once.	If	you	must	have	a	single	funct ion,	break	it 	up,	prove	the	composit ion,	and	then	prove	the	equality	of	the	single

funct ion	to	the	composed	funct ions.	To	prove	a	property	about	a	CONS,	prove	the	property	for	the	element	to	be	consed,	and

then	for	the	list 	(P	(CONS	(A	B)))	=	(AND	(P	A)	(P-for-all-in-list 	B))	If	you	nd	you	cannot	prove	a	lemma	(IMPLIES	P	(EQUAL	X

Y))	because	it 	rewrites	a	variable,	prove	(IMPLIES	P	(EQUAL	(EQUAL	X	Y)	T))	instead.	It 	is	often	better	to	return	the

parameter	itself	on	a	base	case	in	a	de	nit ion	such	as	(IF	(NLISTP	BAR)	BAR	...)	instead	of	the	way	I	used	to	do	it 	(IF	(NLISTP

BAR)	NIL	...).	This	will	save	the	prover	from	generat ing	subcases	for	when	BAR	is	not	a	list 	and	not	NIL,	i.e.	some	other	literal

atom.	The	main	quest ion	to	ask	if	the	prover	cannot	prove	something	\obvious":	Did	it 	choose	the	right 	induct ion	scheme?	When

it 	picks	the	wrong	one,	it 	usually	blows	the	proof	at tempt.	Some	people	have	gotten	into	the	habit 	of	always	giving	the	prover

the	appropriate	induct ion	hint 	((INDUCT	(FOO	A	B))).	This	also	results	in	a	slight ly	faster	proof,	as	it 	keeps	the	prover	from

wast ing	t ime	by	at tempt ing	to	do	the	proof	without	induct ion	before	giving	up	and	using	induct ion	on	the	original	goal.	Give

precedence	to	an	uncondit ional	rewrite	rule,	that 	is,	one	which	has	no	hypotheses.	Only	when	they	get	really	messy	should	a

condit ion	be	pulled	out	and	the	rule	split .	For	example,	(EQUAL	FOO	(IF	BAR	A	B))	is	more	useful	than	the	two	rules	(IMPLIES

BAR	(EQUAL	FOO	A))	and	(IMPLIES	(NOT	BAR)	(EQUAL	FOO	B))	.	If	the	prover	can	prove	your	main	theorem	right 	away,

something	is	wrong.	Either	you	have	a	contradict ion	in	the	hypotheses,	contradictory	axioms	in	the	data	base,	the	theorem	is

vacuously	t rue	because	some	funct ion	always	returns	nil	no	matter	what	parameters	are	o	ered,	or	else	the	theorem	is	restat ing

something	already	in	the	data	base.	It 	is	point less	{	although	very	tempt ing	{	to	t ry	and	prove	lemmata	in	the	hopes	of	them

being	useful.	One	must	demonstrate	the	usefulness	of	a	theorem	in	the	manner	stated,	and	then	at tempt	to	prove	it .	The

theorem	prover	o	ers	a	mechanism	with	ADD-AXIOM	to	add	a	rule	to	the	data	base	without	proof.	In	this	manner,	one	can	check

if	the	rule	is	indeed	on	the	crit ical	path	of	the	main	theorem	proof.	The	interact ive	proof	checker,	PC-NQTHM,	is	absolutely

necessary	for	discovering	exact ly	what	kind	of	lemmata	might	be	useful.	At 	some	point 	during	the	invest igat ion,	one	tends	to	nd

an	obvious	fact 	was	missing	as	a	rewrite	rule	in	a	speci	c	form,	i.e.	with	appropriate	hypotheses.	Avoid	huge	case	splits.	If	you

put	rules	such	as	these	in	the	proof	script 	in	this	order:

1.	(EQUAL	A	(IF	P	B	C))	2.	(IMPLIES	P	(EQUAL	A	B))	3.	(IMPLIES	(NOT	P)	(EQUAL	A	C))

the	prover	will	t ry	3	rst ,	then	2	(which	can	be	relieved	if	P	can	be	established	or	disproved).	If	neither	is	the	case,	then	the

uncondit ional	rule	will	re,	causing	a	case

7.3.	CONSIDERATIONS	OF	PROVER	USE

161

split .	This	will	increase	the	likelihood	of	them	being	useful.	I	tended	to	have	these	rules	in	my	scripts,	but	in	the	order	3,	2,	1,

because	that	was	the	order	in	which	I	had	proved	them,	and	I	often	wondered	why	they	were	not	being	used	as	I	had	expected

them	to.	If	you	are	having	trouble	with	a	main	theorem,	look	for	alternate	statements	of	correctness	which	might	be	more	easily

provable.	When	using	lexicographic	ordering,	add	one	to	each	element	of	the	ordinal	measure	so	that	they	are	never	zero,

because	the	elements	must	be	posit ive.	If	you	have	a	sort 	of	equivalence	class	part it ioning	for	a	value	in	that	it 	can	either	be	a

member	of	class	A	or	of	class	B	or	of	class	C,	express	your	funct ions	so	that	all	members,	that 	are	not	in	A	or	B,	are	in	C	{	this

will	keep	the	prover	from	asking:	Well,	what	if	X	is	neither	an	A	or	a	B	or	a	C?	Concentrate	on	the	full	picture,	get	your	speci

cat ions	down	and	do	the	proof	by	hand,	and	work	through	a	small	example.	Then	throw	everything	away	and	do	it 	again	for	the

larger	case.	If	you	have	to	use	a	clock	in	a	de	nit ion,	you	will	need	a	predicate	to	recognize	when	the	funct ion	has	been	halted

because	of	insu	cient	clock	t icks.	Then	you	can	formulate	your	theorems	(IMPLIES	(NOT	(HALTEDP	(STEP	N)))	...).	St icking	in

constants	ruins	induct ions.	Turn	constants	into	variables	when	they	are	part icipat ing	in	an	induct ion.	That	is,	prove	a	property	for

all	X	and	then	show	by	rewrit ing	that	it 	holds,	of	course,	for	0.	Watch	out	for	proper	list 	problems!	nil	is	not	a	list !	You	can	either

make	everything	a	PLIST	with	nil	in	the	last 	cdr,	or	you	can	always	ident ify	nil	and	all	literal	atoms	as	being	representat ions	for

the	empty	list .	Equality	subst itut ions	are	only	good	when	they	are	thrown	away	after	use.	If	you	cannot	prove	a	theorem,	look	for

a	more	general	statement	of	the	problem	to	prove.	Then	try	and	show	that	the	theorem	in	quest ion	is	just 	a	special	case	of	the

general	one.	Check	with	R-LOOP	before	you	start 	proving	that	your	funct ions	actually	work	on	a	few	test 	cases.	Nothing	is	more

frustrat ing	than	trying	to	do	proofs	on	incorrect ly	implemented	funct ions,	or	discovering	that	all	theorems	are	vacuously	t rue

because	all	funct ions	just 	return	nil.	Theorems	about	LESSP	are	not	stored	as	rewrite	rules	but	as	linear	arithmet ic	rules.	That

can	make	them	work	not	as	expected,	as	they	are	examined	for	use	at 	a	di	erent	point 	in	the	proof	process.	Even	though

NQTHM	has	a	8	form	FOR,	stay	away	from	it .	It 	is	very	di	cult 	for	beginners	to	prove	anything	useful	about	funct ions	using	FOR

unless	you	have	a	deep	understanding	of	how	it 	actually	works.	NQTHM	is	no	di	erent	than	any	other	theorem	prover	in	this

regard:	the	most	successful	users	of	the	system	work	closely	with	the	people	who	wrote	the	system.	All	the	people	I	have

spoken	with	who	have	used	NQTHM	successfully	on	non-trivial	proofs	have	either	spent	t ime	in	Aust in	themselves,	or	worked

very	closely	with	the	\	rst-stringers",	the	researchers	who

7.3.3	A	Strategy	for	Using	NQTHM	Outside	of	Aust in?

162

CHAPTER	7.	DISCUSSION

wrote	their	dissertat ions	with	Boyer	and	Moore	using	the	prover.	How	should	one	go	about	using	NQTHM	from	a	remote	locat ion

such	as	Kiel	or	Berlin?	Have	a	solid	background	in	mathematical	logic.	Read	both	books	by	Boyer	and	Moore.	Understand	your

problem	domain	thoroughly.	Go	to	Aust in	or	pay	one	of	the	researchers	to	come	to	you	for	at 	least 	a	week,	if	not 	more,	and	do

lots	of	exercises	using	the	prover.	Re-read	the	second	book	(BM88])	and	look	through	the	examples	directory	delivered	with	the

prover	for	similar	things	to	what	you	want	to	do.	Use	PC-NQTHM	to	discover	proofs,	then	convert 	these	to	less	brit t le	NQTHM

proofs.	Never	proof	hack!	Always	convince	yourself	that 	the	current	proof	is	on	your	crit ical	path.	Allow	plenty	of	t ime.	Keep	in

contact 	with	the	experts	and	use	forums	such	as	the	nqthm-users	mailing	list6	for	advice.	And	above	all,	do	not	work	alone,	as	I

did.	Discussing	proof	steps	with	other	people	is	the	best	way	to	success.	Laurence	Pierre	in	Marseilles,	France	used	NQTHM	in

a	team	to	do	hardware	proofs	Pie90,	Pie93,	Pie94].	Of	course,	she	also	spent	t ime	in	Aust in,	but	they	have	been	very

successful	in	their	work	because	they	are	a	team.

7.4	Summary

Can	mechanical	veri	cat ion	be	used	for	\real"	software	projects?	Despite	the	di	cult ies	encountered	in	this	part 	of	the	veri	cat ion

project 	I	believe	it 	can	{	even	with	NQTHM	{	but	an	intensive	t raining	program	is	necessary	to	learn	to	use	it 	and	to	understand

how	it 	proves.	Access	to	an	expert 	is	vital,	and	I	wish	to	thank	Bill	Bevier,	Matt 	Kaufmann	and	Bill	Young	and	the	others	from

CLInc,	who	gave	me	enormous	amounts	of	support 	during	my	visits	in	Aust in	and	by	electronic	mail.	It 	is	vital	for	a	veri	cat ion	e

ort 	to	go	hand	in	hand	with	the	implementat ion	of	a	system.	There	are	so	many	design	decisions	that	might	seem	to	be	of	lit t le

consequence,	but	that 	can	have	an	enormous	e	ect 	on	the	proof.	Even	doing	hand	proofs	in	parallel	to	the	implementat ion	and

then	at tempt ing	to	do	the	mechanical	veri	cat ion	afterwards	is	no	assurance	that	a	quick	mechanical	proof	will	be	found.	It 	is	so

easy	to	use	things	like	set	theory	or	existent ial	quant i	cat ion	in	a	hand	proof	which	are	extremely	di	cult 	to	use	in	a	mechanical

proof	using	a	prover	like	NQTHM.	The	most	important	requirement	for	a	mechanical	veri	cat ion,	in	my	opinion,	is	that 	the

implementat ion	and	the	veri	cat ion	be	done	in	parallel,	not 	in	sequence.	It 	would	be	helpful	if	there	were	a	\theorem	prover

clearing	house"	that	classi	ed	the	theorem	provers	available	as	to	the	types	of	problems	that	they	are	suited	for.	There	should

be	benchmarks	demonstrat ing	the	proofs	for	speci	c	problems	as	formulated	for	the	di	erent	systems,	and	other	examples	of

non-trivial	proof	types	that	demonstrate	the	respect ive	strengths	of	the	systems.	With	such	a	body	of	comparat ive	informat ion

available,	it 	would	be	easier	to	pick	a	theorem	prover	that	promises	the	most	ut ility	for	the	problem	at	hand.

6

nqthm-users@cli.com

7.4.	SUMMARY

163

But	industrial	users	should	be	aware	that	even	proven	correct 	software	will	contain	errors.	There	can	be	errors	in	speci	cat ion,

such	as	the	over-speci	cat ion	in	the	is-indentat ion	case,	there	can	be	speci	cat ion	mis-matches	between	the	di	erent	port ions	of

the	system,	and	there	can	be	any	number	of	representat ional	di	cult ies	that	fall	through	the	mesh	of	a	proof.	For	example,	if	a

selector	funct ion	is	so	improperly	implemented	that	a	constant	default 	value	is	always	returned,	this	will	probably	not	be	caught

and	will	cause	most	of	the	theorems,	which	were	proven	using	the	funct ion,	to	be	vacuously	t rue.	Proving	software	correct 	does

not	free	us	from	the	responsibility	to	test ,	since	we	must	also	test 	the	assumptions	about	the	environment	which	our	systems

make.	But	proving	software	to	be	correct 	can	help	to	nd	some	of	the	more	elusive	errors	in	our	systems,	an	important	aspect

especially	in	the	area	of	safety-crit ical	systems,	where	it 	is	absolutely	necessary	to	have	the	software	as	error-free	as	possible.

It 	is	necessary	for	the	tools	for	doing	program	veri	cat ion	to	become	much	easier	to	learn	and	to	use,	so	that	unsophist icated

users	can	apply	veri	cat ion	to	port ions	of	a	program,	just 	as	today	they	use	a	debugger	to	invest igate	the	behavior	of	variables

between	program	statement	execut ions.	And	I	do	believe,	contrary	to	Fetzer's	opinion,	that 	one	day	program	veri	cat ion	will	be

a	generally	applicable	and	completely	reliable	method	for	guaranteeing	program	performance.	NQTHM	will	not 	be	the	veri	er	of

choice,	but	whatever	system	that	will	be	is	sure	to	have	learned	how	to	do	induct ion	proofs	from	NQTHM.	I	hope	that	this	work

may	contribute	in	some	small	way	towards	reaching	that	goal.

Acknowledgements

I	am	grateful	to	Prof.	Dr.	Hans	Langmaack	for	giving	me	the	opportunity	to	do	this	research,	and	for	his	immense	encouragment

and	support 	throughout	the	years.	Even	though	I	moved	350	km	away,	he	was	always	willing	to	read	something	I	had	writ ten	or

discuss	at 	length	some	aspect	of	this	work.	I	also	wish	to	thank	Prof.	Dr.	Robert 	S.	Boyer	for	his	pat ience	and	insight	{	when	I

couldn't 	see	the	forest 	for	the	t rees	he	was	able	to	see	a	way	through	{	and	his	insistance	on	at tent ion	to	details.	I	made	great

strides	forward	during	my	visits	to	Computat ional	Logic,	Inc.	The	researchers	there	{	especially	Bill	Bevier,	Matt 	Kaufmann,	J

Moore,	Larry	Smith	and	Bill	Young	{	had	open	doors,	and	gladly	discussed	their	work	and	mine	with	me.	The	support ive

environment	at 	CLInc	is	so	conduct ive	to	research	and	scholarship.	I	am	happy	to	have	been	able	to	work	there.	Many	thanks

also	to	my	pat ient 	and	long-su	ering	colleagues	and	friends,	especially	Bett ina	Buth,	Karl-Heinz	Buth,	Marit ta	Heisel	and	Thomas

Santen	and	the	ent ire	ProCoS	group,	for	fruit ful	discussions	and	help	in	proof-reading,	and	to	Summer	Long	for	edit ing	my

germanized	English.	I	spent	most	of	my	t ime	on	this	thesis	working	in	public	computer	rooms	at 	the	Free	University	of	Berlin	and

the	Technical	College	of	Berlin	(TFH).	Schlo	Dagstuhl	gave	me	the	opportunity	to	spend	two	full	weeks	in	residence	with	a

computer	next	to	my	bed,	an	excellent 	library	across	the	hall	and	more	great	food	than	was	good	for	my	waist line.	Instead	of

writ ing	about	why	I	could	not	prove	anything,	I	ended	up	actually	proving	useful	theorems	and	was	able	to	discuss	the	proofs	with

the	researchers	at tending	conferences	there.	Above	all,	I	thank	my	husband,	Dr.	Reinhold	Wul	,	for	his	unending	pat ience	and

encouragement	during	this	ent ire	endeavor.	It 	would	not	have	been	possible	without	him.	He	and	our	son	Rade	have	often	had	to

do	without	me.	This	book	is	dedicated	to	the	memory	of	Kerst in	Maa	.	I	stayed	with	her	and	Eckhard	Falkenhagen	whenever	I

was	in	Kiel	to	discuss	my	work.	She	was	killed	in	a	car	crash	the	day	I	completed	the	copy	for	print ing.	We	miss	her	terribly.

Index

-closure,	43	PLR	0	,	Act ion	table,	179	PLR	0	,	Canonical	collect ion,	178	PLR	0	,	Goto	table,	179	PLR	0	,	Grammar,	177	PLR	0	,

LR(0)	items,	178	a-mk-transit ion,	140,	145	accept,	34,	38,	39,	54,	57,	60,	64	accept-all,	60	accept-all-all-accept ing,	60

accept-is,	111	accept1,	37,	38,	56	accept ing,	111,	112	accept ing-pre	x-is-longest,	54,	61	accept ing-regular-expressions,	57,

58	accepts,	41	accepts-lop,	54,	60	accepts1,	41,	43	accepts2,	43	act ion-lookup,	109,	110,	121,	145	add-axiom,	11	alistp,	55,

96	all-accept ing,	54,	57,	59{61	all-but-axiom,	93	all-in-vocab,	107	all-leaves-in-front ier,	99	all-member,	37{39	all-nfsa-

transit ions,	45,	46	all-pre	xes,	54,	57,	59{61	all-pre	xp,	59,	60	all-pre	xp-all-accept ing,	59	all-pre	xp-all-accept ing-all	-pre	xes,

60	all-pre	xp-all-pre	xes,	59	all-regular-expressions,	56	all-regular-expressions-for-state,	56	all-relat ive-tokens-good,	85	all-

rights-terminal,	107	all-subbags,	28,	30,	33,	36{38,	46	alphabet,	25,	26,	30,	32,	38,	39,	41	append-append,	96	164	append-

eliminat ion,	118	append-from-bottom-pop-n,	91,	117	append-from-bottom-push,	119	append-leaves,	116	append-left -id,	55,

96	append-nil,	55,	96	append-remove-common-pre	x,	61	ascii-nine,	74	ascii-to-digit ,	74	ascii-to-digits,	73{75	ascii-zero,	74

assoc,	65	axiom,	11,	92	base,	73{75	Bevier	mode,	153	Bevier,	William	R.,	81,	153	bl,	87,	88	Boyer,	Robert 	S.,	9	Bundy,	Alan,

117	canonical-collect ion,	139,	145	car,	10	car-append-list ,	119	card,	94,	95	cc-name,	56	cdr,	10	character	class,	49	clock,	111

closure,	137{139	closure-step,	137	Cohn,	Avra,	7	collect-indents,	79,	80,	83	collect-indents-nlistp,	79	collect-values,	54,	61,	62

collect-values-cons,	61	collect ion,	138	comments,	66,	68	commutat ivity-of-plus,	71	commutat ivity-of-t imes,	72	compact,	87

completed-items,	140,	141	con	gurat ion,	102

INDEX

con	gurat ion-induct ion-step	-reduce,	118	-shift ,	115	connect,	147	consl,	28	construct-dpath,	42	construct-item-set,	134,	135

construct-tables,	145	cont inuat ion	removal,	76	cont inuat ions,	67	convert ,	65,	67	convert-back,	74,	75	corresponds,	124	de

nedp,	27,	37	de	nedp-means-equal,	37	defn,	10	delete,	142,	144	deriv-rule,	106	derivat ion,	103	determine-key-words,	70,	71

determinist ic-table,	32,	33	determinist ic-table-append,	33	determinist ic-table-dfsa-table,	33	determinist ic-table-dfsa-tablefor-

symbol,	33	for-symbol1,	33	determinist ic-t ransit ion,	32	dfsa-accepts=>nfsa-accepts,	39	dfsa-	nal-states,	30,	33,	36{38	dfsa-

nal-states-member,	33	dfsa-	nal-states-subsetp,	33	dfsa-next-state,	27{29,	35{37	dfsa-next-state-distrib,	36	dfsa-next-state-

union,	35	dfsa-next-t ransit ion,	29,	35	dfsa-starts,	29,	30,	46	dfsa-table,	29,	30,	33,	37,	38,	46	dfsa-table-for-symbol,	29,	33,

35,	37	dfsap,	32,	147	dfsap-generate-dfsa,	32	dfsap-generate-dfsa-with	-epsilon,	147	di	-cycle,	66,	81,	83	di	-cycle1,	81{83	di

-cycle1-listp,	81	di	-cycle1-nlistp,	81	di	-cycle1-not-numberp,	82	digit -to-ascii,	74	digit -zero,	74	digits-to-ascii,	74,	75	discard,

68	discard-does-not-disturb-non	-discards,	68	discont inue,	76{78	discont inue-car,	78	disjoint ,	34	do-not-push,	37	do-not-push-

theorem-3,	38	domain,	55,	69{71,	87,	97	dot,	93,	94,	134,	136{140	dot-sym-in-item-set,	138

165

EMACS,	154	emit ,	82,	83	emit-relat ive,	82	emit-theorem,	83	emit1,	82,	83,	85,	86	emit1-theorem,	83	empty	line	removal,	77

empty-act ion,	141	empty-item-set,	135{138,	140,	142	emptystack,	90,	91,	110,	112,	115,	121	emptytree,	98{100,	102,	115,

121	end-of-	le,	93,	94,	107,	111,	112,	144,	145	epsilon,	44,	142{144	epsilon-closure,	45,	46	epsilon-closure-dfsa-ident ity,	46

epsilon-step-all,	137	equal-item-set,	136,	137	equal-length-0,	55,	95	equal-order-subsetp,	36	equal-plist ,	55,	96	equal-plus-0,

71	equal-t imes-0,	71	error,	111,	112	event,	10	exists-prod?,	142,	143	nal-states,	41	nals,	25,	30,	34,	35	nd-label,	93	nite	state

automata,	50	rst ,	143	rst-item,	135,	137,	140,	141	rst-list ,	143,	144	rstn,	84	follow,	144	follow1,	144	from-bottom,	91,	111,

114{123	from-bottom-push,	91

166	front ier,	99,	101,	115,	116,	118	front ier-branches-is-leaves,	118	front ier-leaf-rewrite,	116	front ier-t ree-is-leaves,	116	fsa*,

25,	30	fsap,	25,	26,	32,	34,	35,	56	fsap*,	25	generate-dfsa,	30,	32,	34,	38,	39	generate-dfsa-with-epsilon,	147	get-prods,	101,

102	Gloess,	Paul,	16	glue1,	85	glue2,	85	goto-funct ion,	138,	141,	142	goto-lookup,	109,	111	grammar,	92	great-parsing-step-

invariant,	118	ground	zero,	12	Gypsy,	7	half,	79,	80	halve,	79,	80	halved-listp,	79,	80	helper,	60	HOL,	152	Horner	method,	72

how-much,	84	ident i	ers,	66	indent-free,	85,	86	indent-free-append,	85	indent-free-cons,	85	indent-free-emit1,	86	indent-free-

indentator,	86	indent-free-make-list ,	85	indent-free-relat ive-to-ni-si-bi,	86	indent-posit ions-preserved,	79	indent-posit ions-

preserved-halve,	79	indentat ion	removal,	67,	78,	80	indentator,	85,	86	indents-halved,	80	index,	65	input,	26,	56	input-levels,	66

insert-dots,	134	integer-convert ,	73,	75	integer-tokens-well-formed,	75	intersect ion,	35,	94,	95	inv-reduct ions,	121	inv-

reduct ions-reduce,	121

INDEX

inv-reduct ions-shift ,	121	inv-roots-reduce,	123	inv-roots-shift ,	122	inv-rt -sent-1,	120	inv-rt -sent-1-reduce,	120	inv-rt -sent-1-

shift ,	119	inv-stack-size,	114	inv-stack-size-reduce,	114	inv-stack-size-shift ,	113	inverse1,	74	inverse2,	75	is-act ion,	141,	145

is-completed-item,	140,	141	is-derivat ion-in,	107	is-empty,	90,	91,	101,	102,	110	is-grammar,	94	is-in-follow,	141	is-

indentat ion,	76,	79,	82,	87,	88	is-integer-token,	72{75	is-kw-indentat ion,	76{78,	80,	82,	85	is-leaf,	98,	99,	101,	102,	116	is-leaf-

in,	98,	99	is-ni-si-bi,	86	is-relat ive,	82{85	is-right-derivat ion-in,	107	is-stack,	90,	91,	101,	102,	110,	113{120,	122,	123	is-string-

in,	97,	107	is-subtree,	98,	99	is-subtree-leaf-is-member	-front ier,	99	is-t ree,	98{102,	115	is-wf-act ion-act ion-tab,	121	is-wf-

grammar,	94	item-set,	135,	137{139,	141	item-set-size,	136,	141	item-set-union,	95,	135,	137	item-setp,	135{137,	140	items,

139	items1,	138,	139	Jones,	Cli	,	8	jump-dot,	137,	138	just-digits-less-than-b,	72,	73,	75	Kaufmann,	Matt ,	9,	38	key-words-

step,	71	keyword	discriminat ion,	66,	70	labels,	94	last ,	95,	106,	111,	140

INDEX

lastdigit ,	74	LCF,	7	leaf,	97	leaf-front ier,	99	leaves,	101,	115{118	leaves-append,	115	leaves-base,	115	leaves-from-bottom-

pop-n-trees,	118	leaves-from-bottom-reduce	-leaves,	116	leaves-from-bottom-reduce-trees,	117	leaves-list -t ree=front ier,	115

left -hand-sides,	93	length,	32,	45,	55,	58,	61,	65,	78,	80,	83,	94,	95,	112,	120,	121,	137,	139,	141{	144	length-append,	120

length-cons,	55,	95	length-make-list ,	83	length-nlistp,	55,	95	lessp-length-cons,	95	lessp-pop-stack,	91	lessp-quot ient,	72	listp,

10	listp-make-list ,	83	lists,	95	litatom,	10	lockstep,	107	longest,	57,	59,	60	longest	pre	x,	54,	57	longest-pre	x-token,	58

longest1,	59{61	longestp,	54,	61	lookup-follow,	141	lop,	54,	57,	58,	60{62	lop-opt,	64	lr-0-items,	135,	139,	145,	147	main-

theorem,	124	main-theorem-toktrans-5,	77	main-theorem-toktrans-5a,	77	main-theorem-toktrans-5b,	77	main-theorem-

toktrans-6,	80	make-key-words,	70,	71	make-list ,	83{85	make-list-zero,	83	make-replace,	69	map-listp,	43	matches,	84

matches-stack,	110,	111

167	Matt 	Factor,	159	member-accept-all-accepts,	60	member-append,	99	member-dfsa-	nal-states-some	-member,	38

member-dstate-dfsa-	nal-states,	36	member-longest,	60	member-longest1,	60	member-order-dfsa-	nal=>some	-member,	38

mk-act ion,	108,	109	mk-act iontab,	140,	145	mk-con	gurat ion,	103,	110{114,	116,	118{	123	mk-derivat ion-step,	105,	111,	114,

120,	121,	123	mk-error-act ion,	109,	141,	145	mk-goto-1-nt ,	141,	142	mk-gototab,	142,	145	mk-grammar,	92	mk-prod,	92,

102,	111,	114,	120,	121,	123,	134	mk-reduce-act ion,	109,	141	mk-selector,	109	mk-shift -act ion,	109,	141	mk-tables,	108,

145	mk-token,	10,	58,	65,	69{71,	73{75,	78,	79,	82{84,	86,	87,	111,	112	mk-transit ion,	25,	29,	56	mk-tree,	97,	99,	110,	111,

113,	116,	119,	121,	122	mk-unique-set,	95	Moore,	J,	9	my-make-list ,	87	Myhill,	J.R.,	21	nat-to-pn,	73{75	ndfsap,	26,	32,	38,

39,	56,	147	ndfsap-connect-lr-0-items,	147	new-accept,	34	newer-accept,	35	newest-accept,	35	newest-accept1,	35	next-

items,	136,	137	next-state,	41,	42	next-state-table,	41	next-states,	27,	34{37,	44,	56	next-states-append,	27,	37	next-

states-dfsa-table,	37	next-states-dfsa-table-for

168	-symbol,	35	next-states-list ,	34,	35,	45,	46,	56	next-states-list -epsilon-closure	-reached,	46	next-states-list -nil,	45	next-

states-list -order-equal,	46	next-states-list -same-as-dfsa	-next-state,	35	nexts,	26,	27,	32,	35,	56	NFSA	DFSA,	construct ive

proof,	24	NFSA	DFSA,	existent ial	proof,	39	NFSA	DFSA,	hand	proof,	21	nfsa-accepts=>dfsa-accepts,	34,	38	nfsa=dfsa,	39

ni-si-bis,	83	nl,	87	no-cont inuat ions-p,	76,	77	no-discards-left ,	68	no-empty-lines,	77	no-empty-lines-meaning,	77	no-leading-

zeros,	74,	75	no-unused-product ions,	93,	94	node-count,	101,	120,	121	node-count-append,	120	node-count-reduce-trees,

121	node-count-top-n-pop-n,	120	node-ct ,	101	nodes,	102	non-de	nedp-next-state,	27,	37	non-discards-undisturbed,	68	none-

larger,	61	none-larger-longest1,	61	not-de	ned-next-states-nil,	37	not-empty-not-zero,	91	not-lessp-length-longest1-other,	61

not-numberp-make-list ,	83	not-some-member-not-member-dfsa	-	nal-states,	38	NQTHM,	9	nqthm-mode,	154	nth,	137,	138,

140,	141	nthcdr,	144	number	conversion,	67,	71	numberp,	10	occam2,	67	ok-indentat ion-value,	78,	79	ok-toktrans-6,	80	one-

epsilon-step-all,	44,	45	one-state,	140,	145	only-leaves-in-front ier,	99	operat ion	names,	66,	68	order,	29,	36{38,	46	order-

dfsa-next-state-order,	36	order-	nal-states,	36	output-levels,	66

INDEX

parse-it ,	111,	112	parser,	109,	112	parsing	skeleton,	89	parsing	tables,	108	parsing-step,	110,	112,	115,	118,	120,	121	PC-

NQTHM,	9,	12,	38	pdi	,	81	Penner,	Volker,	7	pick-token-names,	105{107,	111,	114,	119{	123	pick-token-names-append,	122

pick-token-names-list ,	122	PLR	0	,	49{53	plist ,	55,	83,	96	plist-make-list ,	83	plistp,	26,	45,	54,	55,	61,	62,	73,	75,	91,	96	plistp-

append,	96	plistp-cons,	96	plistp-epsilon-closure,	45	plistp-from-bottom,	91	plistp-nlistp,	55,	96	plistp-reached,	45	plistp-

remove-common-pre	x,	61	plistp-reverse,	73	plus-remainder-t imes-quot ient,	71	plus-zero-arg2,	71	pn-to-nat,	73{75	Polak,

Wolfgang,	5	pop,	90,	91,	101,	102,	110,	116	pop-n,	90,	91,	110,	111,	114,	116{121,	123	pop-n-emptystack,	91	pop-n-sub1-

pop,	116	posit ion,	137,	138,	140{142,	144	pre-token	class,	50	pre	xp,	54,	58{61	pre	xp-longest,	59	pre	xp-longest1,	59	pre	xp-

lop,	54,	60	pre	xp-re	exive,	59	pre	xp-transit ive,	59	preorder-print ,	100,	101	prepare-indentat ions,	78{80	prod-nr,	93,	111,	144

INDEX

product ions,	106,	107	program	synthesis,	8,	63	Proof	Movie,	16	prove-lemma,	11	push,	90,	91,	110{116,	118{123	PVS,	150,

152,	153,	156	quot ient-lessp.arg1,	72	quot ient-plus,	72	quot ient-t imes-instance,	72	Rabin,	M.O.,	21	reached,	45,	46	reached-

append,	45	reaches-nfsa-reaches-dfsa,	46	reduce-trees,	110,	111,	114,	116{118,	120,	121,	123	relat ive-conversion-ok,	84,	85

relat ive-free,	82,	83,	85	relat ive-meaning,	82,	83	relat ive-theorem,	85	relat ive-to-ni-si-bi,	83,	85,	86	remainder-plus,	72

remainder-t imes1-instance,	72	remove-common-pre	x,	58,	61,	62	remove-common-pre	x-lessp,	58	remove-empty-lines,	77,	78

replace,	69,	70	replace-step,	70	rest-items,	135{137,	140,	141	restn,	84	retrieve,	88	retrieve-blanks,	87	retrieve-indents,	86

retrieve-indents1,	86	reverse,	73{75,	111	reverse-append,	73	reverse-reverse,	73	right-hand-sides,	93,	94	roots,	101,	102,

122,	123	roots-append,	122	roots-mk-tree,	122	run,	34,	35	scan,	88	scan-retrieve-is-ident ity,	88	scanner,	speci	cat ion,	54

scanning,	47	Scott ,	Dana,	21	sel-act ion-tag,	110	sel-act iontab,	108,	110

169	sel-axiom,	94,	112,	139,	144	sel-branches,	98{102	sel-deriv,	110,	119,	120	sel-error,	110,	111	sel-gototab,	108,	111	sel-

input,	110,	111,	116,	118{120	sel-items,	135{138,	140,	141	sel-label,	93,	106,	134,	137,	139,	141	sel-label-reduce,	111	sel-

left -derivat ion-step,	106	sel-lhs,	93,	106,	134,	136,	141{144	sel-lhs-reduce,	111	sel-nonterminals,	92,	94,	144,	145	sel-parse,

110,	111,	121	sel-prod-derivat ion-step,	106	sel-product ions,	94,	107,	110,	112,	135,	144	sel-rhs,	93,	106,	111,	134,	136{144

sel-right-derivat ion-step,	106,	107	sel-root,	99{102	sel-size-reduce,	111	sel-state-shift ,	110	sel-states,	110,	114,	115	sel-

symbols,	110,	114,	115,	119,	120,	122,	123	sel-terminals,	92,	94,	107,	144,	145	sel-t rees,	110,	114{116,	118,	121{123

sentent ial	form,	107	sentent ial	forms,	103	set	equality,	28	set	theory,	94	setp,	25,	33,	55,	95	setp-dfsa-	nal-states,	33

Shankar,	Natarajan,	153	shell,	10	shift -dots-through,	134	short 	stack,	15	some-member,	30,	35,	36,	38	some-path-traces-

from-start ,	42	source,	106	spacing,	88	split ,	54,	58,	62	split -splits,	54,	62	split -splits-hint ,	62	squash,	87	stack-length,	91,	110,

111,	114{118,	121,	123	stack-length-pop-n,	114	stack-length-push,	114	stacks,	90	Stallman,	Richard	M.,	154

170	Stanford	Veri	er,	5	start-item,	139	start-states,	41	starts,	25,	30,	34,	35	state,	26,	56	state-act ion,	140,	141,	145	states,

25,	26,	30,	32,	41	step-source,	106,	107,	119,	120	step-target,	106	subseq,	100,	101	subseq-append-append,	101	subseq-

cons-1,	100	subseq-cons-2,	100	subseq-cons-append,	100	subseq-cons-lemma,	100	subseq-front ier-preorder,	101	subsetp,

25{28,	33,	36{38,	45,	46,	55,	94,	107,	139	subsetp-dfsa-next-state,	28,	37	subsetp-dfsa-next-state-1,	36	subsetp-dfsa-next-

state-2,	36	-helper,	36	subsetp-next-states,	27,	37	subsetp-next-states-2,	36	subsetp-order,	36	subsetp-reached,	45

subtree-re	exive,	98	symbol-after-dot,	136,	137	table,	25,	26,	30,	32,	34,	35	target,	106	terminat ion,	44	t imes-add1,	71	t imes-

zero,	71	token	transformat ions,	65	token-listp,	70,	71,	75,	79,	83,	85,	86,	88,	115,	118{120,	122,	123	token-name,	68{76,

78{80,	82,	84{87,	105,	110,	111,	113,	119,	121,	122	token-value,	61,	69{71,	73{76,	78{80,	82{	84,	87,	88	tokenp,	61,	82,	105,

122	tokens,	65	toktrans1,	66,	68	toktrans2,	66,	68	toktrans3,	66,	70	toktrans4,	67,	71	toktrans5,	67,	76	toktrans6,	67,	78

toktrans7,	67,	80

INDEX

toktrans-1-main-theorem,	68	toktrans-2-main-theorem,	70	toktrans-3-main-theorem,	71	toktrans-4-main-theorem,	75

toktrans-5,	78	toktrans-6,	80	toktrans-6a-main-theorem,	79	top,	91,	101,	102,	110,	111	top-n,	91,	110,	111,	114,	117,	118,

120,	121,	123	traces-from-start ,	42	t races-to-	nal,	41	t ransit ionp,	26,	32,	56	tree,	97	type	restrict ion,	10	union,	28	valid-ascii-

digit -p,	74	valid-ascii-digits-p,	75	valid-deciaml-digit -p,	74	valid-item,	140,	141	value,	69{71,	97	Vienna	Development	Method,	8

vocab,	92,	107,	139	VSE,	150,	155	well-formed-pn,	75	wf-table,	26{28,	33,	36{38,	56	white	space,	66,	88	Wol	,	Burkhart ,	63

Young,	William	D.,	39	Yu,	Yuan,	16

Appendix	A

Scanning

A.1	Character	Class	Speci	cat ion	for	PL0

R

It 	did	not	seem	necessary	to	introduce	an	explicit 	shell	constructor	for	character	classes,	so	they	are	represented	as	a	list 	of

cons-pairs,	commonly	referred	to	as	a	map.	The	rst 	element	of	each	pair	is	the	literal	atom	giving	the	name	of	the	character

class,	the	second	one	is	the	list 	of	ASCII-codes	for	the	part icipat ing	characters.	Only	explicit 	list ing	is	available,	so	for	example

all	the	let ters	have	to	be	explicit ly	stated	instead	of	giving	an	interval	for	now.	For	PLR	0	we	have	the	following	eleven	classes.

All	of	the	operators	have	been	grouped	together	in	one	class.

(setq	cc	(list 	#\A	#\B	#\C	...	#\Z	#\a	#\b	#\c	...	#\z	(cons	'le	(list 	'(65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85

86	87	88	89	90	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121

122)))	#\0	#\1	#\2	#\3	#\4	#\5	#\6	#\7	#\8	#\9	(cons	'di	(list 	'(48	49	50	51	52	53	54	55	56	57)))	(cons	'pe	(list 	'(46)))	#\.	(cons	'bl	(list

'(32)))	#\Space	(cons	'co	(list 	'(58)))	#\:	(cons	'eq	(list 	'(61)))	#\=	(cons	'mi	(list 	'(45)))	#\(cons	'lt 	(list 	'(60)))	#\<	(cons	'gt 	(list 	'(62)))

#\>	(cons	'nl	(list 	'(10)))	#\Newline	#\+	#*	#\/	#\\	#\?	#\!	#\	#\]	#\(#\)	(cons	'op	(list 	'(43	42	47	92	63	33	91	93	40	41)))))

A.2	DFSA	for	PL0

(setq	t rans	(list

R

This	is	a	collect ion	of	setqs	for	a	DFSA	that	recognizes	the	token	classes	for	PLR	0.

171

172

(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-

transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion

(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-

transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion	(mk-transit ion

(setq	(setq	(setq	(setq	'A	'A	'A	'A	'A	'A	'A	'A	'A	'A	'A	'A	'B	'B	'B	'C	'D	'E	'G	'H	'H	'I	'K	'N	'N	'N	'N	'N	'N	'N	'N	'N	'N	'R	'le	'di	'bl	'co	'eq

'mi	'lt 	'gt 	'op	'nl	'bf	'nf	'le	'di	'pe	'di	'bl	'eq	'mi	'eq	'gt 	'eq	'bl	'le	'di	'pe	'bl	'co	'eq	'mi	'lt 	'gt 	'op	'bl	'(B))	'(C))	'(D))	'(E))	'(F))	'(G))	'(H))	'(I))

'(J))	'(K))	'(K))	'(L))	'(B))	'(B))	'(B))	'(C))	'(D))	'(M))	'(N))	'(O))	'(P))	'(Q))	'(R))	'(N))	'(N))	'(N))	'(N))	'(N))	'(N))	'(N))	'(N))	'(N))	'(N))'	(K))))	co

eq	mi	lt 	gt 	op	nl	bf	nf))	H	I	J	K	L	M	N	O	P	Q	R))	(C	(G	(K	(O	integer)	op)	indent)	le)	(P	(D	.	ws)	(H	.	lt)	(L	.	ef)	.	ne)	(Q

APPENDIX	A.	SCANNING

alphabet	'(li	di	pe	bl	states	'(A	B	C	D	E	F	G	starts'	(A))	finals	'((B	.	name)	(F	.	eq)	(J	.	op)	(N	.	comment)

(E	.	colon)	(I	.	gt)	(M	.	coloneq)	.	ge)))

(setq	nfsa	(fsa*	alphabet	states	starts	t rans	finals))

A.3	Token	Transformat ion	De	nit ions	for	PL0

(setq	discard-list '	(comment	ws))	(setq	replace-words	(list 	(cons	43	'plus)	(cons	42	't imes)	(cons	47	'div)	(cons	92	'mod)	(cons	63

'quest)	(cons	33	'exclaim)	(cons	91	'arrayopen)

R

The	full	token	transformat ion	speci	cat ion	from	a	character	sequence	to	the	corresponding	token	sequence	for	PLR	0	is	given	in

S-expression	notat ion	below.

A.3.	TOKEN	TRANSFORMATION	DEFINITIONS	FOR	PLR	0

(cons	93	'arrayclose)	(cons	40	'parenopen)	(cons	41	'parenclose)))	(setq	key-words	(LIST	(CONS	'(65	(CONS	'(67	(CONS	'(70

(CONS	'(73	(CONS	'(73	(CONS	'(73	(CONS	'(78	(CONS	'(79	(CONS	'(79	(CONS'	(80	(CONS	'(82	(CONS	'(83	(CONS	'(83

(CONS	'(83	(CONS	'(84	(CONS	'(87

173

78	68)	65	76	76)	65	76	83	69)	70)	78	80	85	84)	78	84)	79	84)	82)	85	84	80	85	84)	82	79	67)	69	67)	69	81)	75	73	80)	84	79	80)

82	85	69)	72	73	76	69)

'AND)	'CALL)	'FALSE)	'IF)	'INPUT)	'INT)	'NOT)	'OR)	'OUTPUT)	'PROCKW)	'REC)	'SEQ)	'SKIP)	'STOP)	'TRUE)	'WHILE)))

(setq	cont inue-list 	(cons'	(plus	t imes	div	mod	quest	exclaim	minus	coloneq)	nil))	(defn	token-transformat ions	(toks	discard-list

replace-words	key-words	cont inue-list 	discard-name	determine-name	determine-default)	(indentator	(halve	(prepare-

indentat ions	(remove-empty-lines	(discont inue	(integer-convert 	(determine-key-words	(replace	(discard	toks	discard-list)

discard-name	replace-words)	determine-name	key-words	determine-default))	cont inue-list))))))

A	scanner	for	PLR	0	is	the	following	funct ion:

(defn	scan	(nfsa	cc	tape	discard-list 	replace-words	key-words	cont inue-list 	discard-name	determine-name	determine-default)

(token-transformat ions	(split 	nfsa	cc	tape)	discard-list 	replace-words	key-words	cont inue-list 	discard-name	determine-name

determine-default))

called	as

(scan	nfsa	cc	pl0r	discard-list 	replace-words	key-words	cont inue-list 	'op	'name	'ident))

The	parameter	pl0r	needs	to	be	a	list 	of	bytes,	not	a	le.	The	following	Lisp	forms	can	be	used	to	create	such	a	list .

174

(defparameter	a-very-rare-cons	'eof)	(defun	current-byte	(stream)	peek	at 	the	first 	character/byte	in	the	stream	(let 	((char

(peek-char	nil	don't 	ignore	whitespace	stream	nil	a-very-rare-cons)))	(progn	(princ	char)	char)))

APPENDIX	A.	SCANNING

(defun	rest-bytes	(stream)	remove	the	first 	character	from	the	stream,	return	the	rest 	(let 	((char	(read-char	stream	nil	a-very-

rare-cons)))	(if	(eq	char	a-very-rare-cons)	nil	stream)))	(defun	convert 	(stream)	(if	(eq	(current-byte	stream)	a-very-rare-cons)	nil

(cons	(current-byte	stream)	(convert 	(rest-bytes	stream)))))	(defun	doit 	(prog)	(with-input-from-string	(stream	prog)	(convert

stream)))	(defun	text-to-ascii	(l)	(if	(equal	l	nil)	nil	(cons	(char-code	(car	l))	(text-to-ascii	(cdr	l)))))	(defun	make-bytes	(text)	(text-

to-ascii	(doit 	text)))	This	is	the	program	pl0r/t iny.pl0r	(setq	text1	"INT	x	:	INT	y	:	SEQ	INPUT	?	x	y	:=	x	*	x	OUTPUT	!	y")	We

make	bytes	out	of	it 	(setq	bytes1	(make-bytes	text1))	or	are	lazy	and	use	this	for	the	R-LOOP

A.4.	RETRIEVAL	OF	PLR	0	CHARACTERS

(setq	bytes1	'(73	78	84	32	120	32	58	10	73	78	84	32	121	32	58	10	83	69	81	10	32	32	73	78	80	85	84	32	63	32	120	10	32	32

121	32	58	61	32	120	32	42	32	120	10	32	32	79	85	84	80	85	84	32	33	32	121	10))

175

A.4	Retrieval	of	PL0	Characters

R

This	is	the	outer	retrieval	funct ion	for	obtaining	a	character	sequence	representat ion	that	will	scan	back	to	the	same	token

sequence.

(defn	retrieve	(toks	replace-words	discard-name	determine-default 	key-words	determine-name)	(spacing	(compact	(squash

(convert-back	(retrieve-blanks	(retrieve-indents	toks)))	determine-name	key-words	determine-default)	discard-name	replace-

words)))

called	as

(retrieve	toks	replace-words	'op	'ident	key-words	'name)

176

APPENDIX	A.	SCANNING

Appendix	B

Parsing

B.1	Parsing	Table	Generator

B.1.1	Generat ion	Instruct ions

In	order	to	generate	a	table	for	the	parsing	skeleton	one	must	go	to	a	bit 	of	t rouble,	as	the	rst 	and	follow	calculat ion	could	not	be

expressed	in	NQTHM.	A	non-left -recursive	context-free	grammar	is	needed	as	input	to	the	table	generator.	The	following	lists

the	instruct ions	in	the	order	they	need	to	be	done.	1.	Bootstrap	NQTHM	and	make	sure	that	all	les	in	the	init .lsp	are	loaded.	2.

Start 	(R-LOOP)	3.	Submit 	the	grammar	in	this	form:	(mk-grammar	nonterms	terms	prods

(setq	grammar	(mk-grammar	'(PROG	BLK	PROC	PDECLLIST	PDECL	DECL	SPROCLIST	PDECLREST	SPROCREST

GCREST	SPROC	GCLIST	GC	EXP	LITERAL	SIMPLE	DOP	MOP	VAR)	non-terminals	'(MINUS	NOT	PLUS	TIMES	DIV	REM

EQ	LT	GT	NE	LE	GE	AND	OR	QUEST	EXCLAIM	INT	TRUE	FALSE	SKIP	STOP	COLONEQ	INPUT	OUTPUT	SEQ	IF

WHILE	CALL	IDENT	COLON	LP	RP	LB	RB	REC	INTEGER	ni	si	bi	PROCKW)	terminals	(list 	(mk-prod	0'	(PROG)	'(BLK))	(mk-

prod	1'	(BLK)	'(DECL	COLON	si	BLK))	(mk-prod	2'	(BLK)	'(PROC))	(mk-prod	3'	(DECL)	'(INT	IDENT))	(mk-prod	4'	(DECL)	'(LB

INTEGER	RB	INT	IDENT))	(mk-prod	5'	(PDECL)	'(PROCKW	IDENT	LP	RP	ni	SPROC	bi	COLON))	(mk-prod	6'	(PDECLLIST)

'(PDECL	si	PDECLREST))	(mk-prod	7'	(PDECLLIST)	'(PDECL))	(mk-prod	8'	(PDECLLIST)	'())	(mk-prod	9	'(PDECLREST)

'(PDECL))	(mk-prod	10'	(PDECLREST)	'(PDECL	si	PDECLREST))	(mk-prod	11'	(PROC)	'(REC	ni	PDECLLIST	bi	COLON	si

PROC))	(mk-prod	12'	(PROC)	'(SPROC))	(mk-prod	13'	(SPROC)	'(SKIP))	(mk-prod	14'	(SPROC)	'(STOP))	(mk-prod	15'

(SPROC)	'(VAR	COLONEQ	EXP))	(mk-prod	16'	(SPROC)	'(INPUT	QUEST	IDENT))	(mk-prod	17'	(SPROC)	'(OUTPUT

EXCLAIM	EXP))	(mk-prod	18'	(SPROC)	'(CALL	IDENT	LP	RP))	(mk-prod	19'	(SPROC)	'(SEQ	ni	SPROCLIST	bi))	(mk-prod	20'

(SPROC)	'(IF	ni	GCLIST	bi))	(mk-prod	21'	(SPROC)	'(WHILE	EXP	ni	SPROC	bi))	(mk-prod	22'	(SPROCLIST)	'(SPROC	si

SPROCREST))	(mk-prod	23'	(SPROCLIST)	'(SPROC))	(mk-prod	24'	(SPROCLIST)	'())	(mk-prod	25	'(SPROCREST)

'(SPROC))	(mk-prod	26'	(SPROCREST)	'(SPROC	si	SPROCREST))	(mk-prod	27'	(GCLIST)	'(GC	si	GCREST))	(mk-prod	28'

(GCLIST)	'(GC))	(mk-prod	29'	(GCLIST)	'())	(mk-prod	30	'(GCREST)	'(GC	si	GCREST))	(mk-prod	31'	(GCREST)	'(GC))	(mk-prod

32'	(GC)	'(EXP	ni	SPROC	bi))	(mk-prod	33'	(EXP)	'(SIMPLE))

axiom)

177

178

(mk-prod	34	(mk-prod	35	(mk-prod	36	(mk-prod	37	(mk-prod	38	(mk-prod	39	(mk-prod	40	(mk-prod	41	(mk-prod	42	(mk-prod

43	(mk-prod	44	(mk-prod	45	(mk-prod	46	(mk-prod	47	(mk-prod	48	(mk-prod	49	(mk-prod	50	(mk-prod	51	(mk-prod	52	(mk-

prod	53	(mk-prod	54	(mk-prod	55	(mk-prod	56	(mk-prod	57	(mk-prod	58)	0))'	(EXP)	'(MOP	SIMPLE))	'(EXP)	'(SIMPLE	DOP

SIMPLE))	'(SIMPLE)	'(VAR))	'(SIMPLE)	'(LITERAL))	'(SIMPLE)	'(LP	EXP	RP))	'(LITERAL)	'(INTEGER))	'(LITERAL)	'(TRUE))

'(LITERAL)	'(FALSE))	'(VAR)	'(IDENT))	'(VAR)	'(IDENT	LB	EXP	RB))'	(DOP)	'(PLUS))	'(DOP)	'(MINUS))	'(DOP)	'(TIMES))

'(DOP)	'(DIV))	'(DOP)	'(REM))	'(DOP)	'(EQ))	'(DOP)	'(LT))	'(DOP)	'(GT))	'(DOP)	'(NE))	'(DOP)	'(LE))	'(DOP)	'(GE))	'(DOP)	'(AND))

'(DOP)	'(OR))	'(MOP)	'(MINUS))	'(MOP)	'(NOT))

APPENDIX	B.	PARSING

Pull	out 	the	non-terminals	(setq	nts	(sel-nonterminals	grammar))	The	terminals	need	the	end-of-file	marker	(setq	terms	(append

(sel-terminals	grammar)	(list 	(end-of-file))))

4.	Calculate	the	set	of	LR(0)	items	for	PLR	0	in	(R-LOOP).	The	result ,	with	178	items,	can	be	found	at 	the	WWW-site	given	in

Sect ion	1.2,	where	the	other	large	results	are	also	kept.

*	(setq	fis	(LR-0-items	grammar))	(LIST	(MK-PROD	0'	(PROG)	'(DOT	BLK))	(MK-PROD	0'	(PROG)	'(BLK	DOT))	(MK-PROD	1'

(BLK)	'(DOT	DECL	COLON	SI	BLK))	(MK-PROD	1'	(BLK)	'(DECL	DOT	COLON	SI	BLK))	...)

5.	Create	the	follow	set

(setq	follows	(all-follows	grammar))	ok

6.	Start 	the	LISP-Timer	with

(get-decoded-t ime)

7.	Reenter	(R-LOOP)	calculate	the	canonical	collect ion.	For	PLR	0	it 	consists	of	112	sets	of	items,	each	determining	a	state	in

the	determinist ic	automaton.

*	(setq	cc	(canonical-collect ion	grammar))	(LIST	(ITEM-SET	(LIST	(MK-PROD	0'	(PROG)	'(DOT	BLK))	(MK-PROD	1'	(BLK)

'(DOT	DECL	COLON	SI	BLK))	(MK-PROD	2'	(BLK)	'(DOT	PROC))	(MK-PROD	3'	(DECL)	'(DOT	INT	IDENT))	(MK-PROD	4'

(DECL)	'(DOT	LB	INTEGER	RB	INT	IDENT))	...)))

B.1.	PARSING	TABLE	GENERATOR

8.	Construct 	the	act ion	and	goto	tables.	There	are	511	entries	in	the	act ion	table	and	87	in	the	goto	table	for	PLR	0.

*	(setq	tables	(construct-tables1	cc	nts	terms	fis	follows))	(LIST	(LIST	(CONS'	(0	.	INT)	(MK-ACTION	'SHIFT	18	0	0	0))

(CONS'	(0	.	SKIP)	(MK-ACTION	'SHIFT	70	0	0	0))	(CONS'	(0	.	STOP)	(MK-ACTION	'SHIFT	71	0	0	0))	...)'	((0	.	BLK)	(GOTO	1))

'((0	.	PROC)	(GOTO	16))'	((8	.	PDECLLIST)	(GOTO	12))	'((9	.	BLK)	(GOTO	15))'	((9	.	PROC)	(GOTO	16))	...)

179

9.	How	long	did	we	need	to	wait?

(get-decoded-t ime)

10.	Save	a	copy	of	the	tables	for	future	reference!

180

APPENDIX	B.	PARSING

Bibliography

AL92]	ASU86]	AU72]	BBMS89]	BE76]	Bev88]	Bev89]	Mark	Aagaard	and	Miriam	Leeser.	Verifying	a	Logic	Synthesis	Tool	in

Nuprl:	A	Case	Study	in	Software	Veri	cat ion.	In	Proceedings	of	the	4th	Workshop	on	Computer	Aided	Veri	cat ion,	1992.	Alfred

V.	Aho,	Ravi	Sethi,	and	Je	rey	D.	Ullman.	COMPILERS	:	Principles,	Techniques	and	Tools.	Addison-Wesley,	Reading,	MA,

1986.	Alfred	V.	Aho	and	Je	rey	D.	Ullman.	The	Theory	of	Parsing,	Translat ion	and	Compiling,	volume	I	:	Parsing.	Prent ice-Hall,

1972.	Bett ina	Buth,	Karl-Heinz	Buth,	Ursula	Mart in,	and	Victoria	Stavridou.	Experiments	with	program	veri	cat ion	systems.

Technical	Report 	BB	2,	ProCoS1,	Kiel,	London,	1989.	F.	L.	Bauer	and	J.	Eickel,	editors.	Compiler	construct ion.	An	Advanced

Course,	Berlin,	Heidelberg,	1976.	Springer	Verlag.	William	R.	Bevier.	KIT:	A	Study	in	Operat ing	System	Veri	cat ion.	Technical

Report 	28,	CLInc,	1988.	William	R.	Bevier.	Kit 	and	the	Short 	Stack.	Journal	of	Automated	Reasoning,	5(4),	Dec	1989.

BHMY89]	William	R.	Bevier,	Warren	A.	Hunt,	Jr.,	J	Strother	Moore,	and	William	D.	Young.	An	Approach	to	Systems	Veri	cat ion.

Journal	of	Automated	Reasoning	,	5(4),	Dec	1989.	also	available	as	CLInc	Technical	Report 	41,	1989.	BM79]	Robert 	S.	Boyer

and	J	Strother	Moore.	A	Computat ional	Logic.	Academic	Press,	New	York,	1979.	BM84a]	Robert 	S.	Boyer	and	J	Strother

Moore	.	A	Mechanical	Proof	of	the	Turing	Completeness	of	Pure	Lisp.	In	W.	W.	Bledsoe	and	D.	L.	Loveland,	editors,	Automated

Theorem	Proving:	After	25	years,	pages	133{167.	American	Mathematical	Society,	Providence,	R.I.,	1984.	BM84b]	Robert 	S.

Boyer	and	J	Strother	Moore.	A	mechanical	proof	of	the	unsolvability	of	the	halt ing	problem.	Journal	of	the	ACM,	31(3):441{458,

July	1984.	BM84c]	Robert 	S.	Boyer	and	J	Strother	Moore.	Proof	Checking	the	RSA	Public	Key	Encrypt ion	Algorithm.	American

Mathematical	Monthly,	91(3):	133{167	,	1984	.

1	ProCos	reports	re	ect 	work	which	was	part ially	funded	by	the	Commission	of	the	European	Communit ies	(CEC)	under	the

ESPRIT	programme	in	the	eld	of	Basic	Research	Act ion	project 	no.	3104:	\ProCoS:	Provably	Correct 	Systems"	and	are

available	from	the	authors	or	from	Dines	Bj	rner,	Department	of	Computer	Science,	Technical	University	of	Denmark,	Building

344	,	DK-2800	Lyngby,	Denmark

181

182	BM88]	Bro89]	Brz64]	BWW91]	BY91]	BY92]	CM82]	CO90]	Coh82]	Coh88]	Coh89a]

BIBLIOGRAPHY

Robert 	S.	Boyer	and	J	Strother	Moore.	A	Computat ional	Logic	Handbook	.	Academic	Press,	New	York,	1988	.	A.	Bronstein.

MLP:	String-funct ional	semant ics	and	Boyer-Moore	mechanizat ion	for	the	formal	veri	cat ion	of	synchronous	circuits.	PhD	thesis,

Stanford	University,	1989.	J.	A.	Brzozowski.	Derivat ions	of	Regular	Expressions.	JACM,	11(4):481{494,	Oct.	1964.	Karl-Heinz

Buth	and	Debora	Weber-Wul	.	The	\Automated	Proving	and	Term	Rewrit ing"	Prakt ikum.	Technical	Report 	KHB	3,	ProCoS,	Kiel,

February	1991.	R.	S.	Boyer	and	Y.	Yu.	Automated	correctness	proofs	of	machine	code	programs	for	a	commercial

microprocessor.	Technical	Report 	TR-91-33,	Computer	Science	Dept.,	University	of	Texas,	Aust in,	November	1991.	Robert 	S.

Boyer	and	Yuan	Yu.	Automated	proofs	of	object 	code	for	a	widely	used	microprocessor.	In	Proceedings	of	the	11th	Internat ional

Conference	on	Automated	Deduct ion,	1992.	Avra	Cohn	and	Robin	Milner.	On	using	Edinburgh	LCF	to	prove	the	correctness	of	a

parsing	algorithm.	Technical	Report 	CSR-112-82,	University	of	Edinburgh,	1982.	Rachel	Cardell-Oliver.	Formal	veri	cat ion	of	real

t ime	protocols	using	higher	order	logic.	Technical	Report 	206,	University	of	Cambridge,	Computer	Laboratory,	August	1990.

Avra	Cohn.	The	correctness	of	a	precedence	parsing	algorithm	in	LCF.	Technical	Report 	21,	University	of	Cambridge,	April

1982.	Avra	Cohn.	A	proof	of	correctness	of	the	Viper	microprocessor:	The	rst 	level.	In	G.	Birtwist le	and	P.	A.	Subrahmanyam,

editors,	VLSI	Speci	cat ion,	Veri	cat ion	and	Synthesis,	chapter	1,	pages	1{91.	Kluwer	Academic	Publishers,	1988.	Avra	Cohn.

Correctness	propert ies	of	the	Viper	block	model:	The	second	level.	In	G.	Birtwist le	and	P.	A.	Subrahmanyam,	editors,	Current

Trends	in	Hardware	Veri	cat ion	and	Automated	Theorem	Proving,	chapter	2	,	pages	27{72.	SpringerVerlag,	1989.	Avra	Cohn.

The	not ion	of	proof	in	hardware	veri	cat ion.	Journal	of	Automated	Reasoning	5,	(5):127{	138	,	1989	.	ProCoS	-	ESPRIT	BRA

3104	Final	report 	:	Provably	Correct 	Systems.	Technical	report ,	ProCoS	ID/DTH,	October	1991.	Franklin	L.	DeRemer.	Simple

LR(k)	grammars.	CACM,	14(7):453{460,	1971.	James	H.	Fetzer.	Program	veri	cat ion:	The	very	idea.	CACM,	31(9):1048{1063,

September	1988.	Free	Software	Foundat ion.	Gnu	software	archives.	Walnut	Creek	CD-ROM,	1994.	Mart in	Franzle.	Spezi

kat ion	und	Veri	kat ion	eines	ubersetzers	fur	eine	rekursive	occam-art ige	Programmiersprache.	Master's	thesis,	Inst itut 	fur

Informat ik	und	Prakt.	Mathematik	der	Universitat 	Kiel,	Oktober	1990.

Coh89b]	DB91]	DeR71]	Fet88]	Fou94]	Fra90]

BIBLIOGRAPHY

GAS89]	Glo80]	GMW79]	Gor85]	Gou88]	Gro79]	HLS+	96]

183

HU79]	Hun87]	Hun89]	HW90]	il88]	Jon80]	Jon90]	Kau89]	Kau91]	KLW94]	Knu81]

Donald	I.	Good,	Robert 	L.	Akers,	and	Lawrence	M.	Smith.	Report 	on	Gypsy	2.05.	Technical	Report 	1c,	CLInc,	1989.	Classi	ed.

Paul	Gloess.	An	experiment	with	the	Boyer-Moore	theorem	prover:	A	proof	of	the	correctness	of	a	simple	parser	of	expressions.

In	LNCS	87	:	Proceedings	of	the	CADE-5,	pages	154{169,	Berlin,	1980.	Springer	Verlag.	Michael	Gordon,	Robin	Milner,	and

Christopher	Wadsworth.	Edinburgh	LCF.	Springer	Verlag,	New	York,	1979.	Michael	J.	C.	Gordon.	HOL:	a	machine	oriented

formulat ion	of	higher	order	logic.	Technical	Report 	68,	University	of	Cambridge	Computer	Laboratory,	1985	.	Kevin	John	Gough.

Syntax	Analysis	and	Software	Tools.	Addison-Wesley,	Sydney,	1988.	Stanford	Veri	cat ion	Group.	Stanford	Pascal	Veri	er,	User

Manual.	Technical	Report 	STAN-CS-79-731,	Stanford	University,	Dept.	Comp.	Sci.,	March	1979.	Dieter	Hutter,	Bruno

Langenstein,	Claus	Sengler,	Jorg	H.	Siekmann,	Werner	Stephan,	and	Andreas	Wolpers.	Deduct ion	in	the	Veri	cat ion	Support

Environment	(VSE).	In	Proceedings	of	the	Formal	Methods	in	Europe	1996,	Oxford,	1996.	To	appear.	John	E.	Hopcroft 	and	Je

rey	D.	Ullman.	Introduct ion	to	Automata	Theory,	Languages	and	Computat ion.	Addison-Wesley,	Reading,	1979	.	Warren	A.

Hunt,	Jr.	The	mechanical	veri	cat ion	of	a	microprocessor	design.	Technical	Report 	6,	CLInc,	1987.	Warren	A.	Hunt,	Jr.

Microprocessor	design	veri	cat ion.	Journal	of	Automated	Reasoning,	5(4),	Dec	1989.	also	available	as	CLInc	Technical	Report

48,	1989.	R.	Nigel	Horspool	and	Michael	Whitney.	Even	faster	LR	parsing.	Software	{	Pract ice	&	Experience,	20(6):515{535,

June	1990.	inmos	ltd.	occam	2	Reference	Manual.	Series	in	Computer	Science.	Prent ice-Hall	Internat ional,	1988.	Cli	B.	Jones.

Software	Development:	A	Rigorous	Approach.	Prent ice	Hall,	1980.	Cli	B.	Jones.	Systemat ic	Software	Development	using

VDM.	Prent ice-Hall	Internat ional,	London,	1990.	Matt 	Kaufmann.	DEFN-SK:	An	Extension	of	the	Boyer-Moore	Theorem	Prover

to	Handle	First-Order	Quant i	ers.	Technical	Report 	43,	CLInc,	1989.	Matt 	Kaufmann.	Generalizat ion	in	the	presence	of	free

variables:	A	mechanicallychecked	correctness	proof	for	one	algorithm.	Journal	of	Automated	Reasoning,	7:109{159,	1991.

Kolyang,	Junbo	Liu,	and	Burkhart 	Wol	.	Transformat ional	development	of	lex.	Technical	Report 	Draft 	version	2	July	94,

Universitat 	Bremen,	1994.	Donald	E.	Knuth.	The	Art 	of	Computer	Programming,	Volume	2:	Seminumerical	Algorithms.	Addison-

Wesley,	Reading,	MA,	1981.

184	KW95]

BIBLIOGRAPHY

Kolyang	and	Burkhart 	Wol	.	Development	by	Re	nement	Revisited:	Lessons	learnt 	from	an	example.	In	Proceedings	of	the

Softwaretechnik'95,	Braunschweig,	10	1995.	also	in	\Mit teilung	der	GI-Fachgruppe	Software-Engineering	und	Requirements-

Engineering,	Band	15,	Heft 	3,	Okt.	1995.	Peter	Landin.	The	next	700	programming	languages.	CACM,	9,	March	1966.	Hans

Langmaack.	Applicat ion	of	regular	canonical	systems	to	grammars	t ranslatable	from	left 	to	right .	Acta	Informat ica,

1(1):111{114,	1971.	M.	E.	Lesk.	LEX	-	a	lexical	analyzer	generator.	Technical	Report 	39,	AT&T	Bell	Laboratories,	Murray	Hill,

NJ,	1975.	Otto	Mayer.	Syntaxanalyse.	Reihe	Informat ik	27.	BI	Wissenschaftsverlag,	1978.	Markus	Muller-Olm.	Korrektheit 	einer

ubersetzung	der	Sprache	rekursiver	Funkt ionsde	nit ionen	erster	Ordnung	in	eine	einfache	imperat ive	Sprache.	Master's	thesis,

Inst itut 	fur	Informat ik	und	Prakt.	Mathematik	der	Universitat 	Kiel,	November	1990.	J	Strother	Moore.	Piton:	A	veri	ed	assembly-

level	language.	Technical	Report 	22,	CLInc,	1988.	J	Strother	Moore.	A	mechanically	veri	ed	language	implementat ion.	Journal	of

Automated	Reasoning,	5(4),	Dec	1989.	also	available	as	CLInc	Technical	Report 	30,	1988.	J.	McCarthy	and	J.	Painter.

Correctness	of	a	compiler	for	arithmet ic	expressions	.	In	J.	T.	Schwartz,	editor,	Mathematical	Aspects	of	Computer	Science.

Proc.	Symp.	Appl.	Math,	volume	XIX,	pages	33{41.	American	Mathematical	Society,	1967.	J.R.	Myhill.	Finite	automata	and

representat ion	of	events.	Technical	Report 	Tech	Rep.	57-624,	Wright	Air	Development	Center,	1957.	S.	Owre,	J.	Rushby,	and

N.	Shankar.	PVS:	A	Prototype	Veri	cat ion	System.	In	Deepak	Kapur,	editor,	Proceedings	of	the	CADE	11,	Saratoga,	NY,	June

1992,	number	607	in	LNAI,	pages	748{752.	Springer	Verlag,	1992.	S.	Owre,	J.	Rushby,	and	N.	Shankar.	A	tutorial	on	speci

cat ion	and	veri	cat ion	using	PVS.	In	Tutorial	Material	for	FME'93:	Industrial-Strength	Formal	Methods.	Proceedings	of	the	First

Internat ional	Symposium	of	Formal	Methods	Europe,	Odense,	Denmark,	pages	357{406,	April	1993.	David	Pager.	A	pract ical

general	method	for	construct ing	LR(k)	parsers.	Acta	Informat ica,	7:249{268,	1977.	Lawrence	C.	Paulson.	Isabelle:	The	next

700	theorem	provers.	In	P.	Odifreddi,	editor,	Logic	and	Computer	Science,	pages	361{	386	.	Academic	Press,	1990.	Lawrence

C.	Paulson	.	Introduct ion	to	Isabelle.	Technical	Report 	280,	University	of	Cambridge,	Computer	Laboratory,	1993.	Lawrence	C.

Paulson.	Isabelle:	A	Generic	Theorem	Prover.	Number	828	in	LNCS.	Springer-Verlag,	New	York,	1994.

Lan66]	Lan71]	Les75]	May78]	MO90]

Moo88]	Moo89]	MP67]

Myh57]	ORS92]	ORS93]

Pag77]	Pau90]	Pau93]	Pau94]

BIBLIOGRAPHY

Pen83]	Pie90]	Pie93]	Pie94]	Pol81]	Pro88]	RS59]	Rus85]	Rus92]	Sha85]	Sha86]	SSS88]

185

Volker	Penner.	Entwicklung	und	Veri	kat ion	eines	Scanner	Generators	mit 	dem	Gypsy	Veri	cat ion	Environment.	Technical	Report

86,	RWTH	Aachen,	Schriften	zur	Informat ik	und	Angewandten	Mathematik,	1983.	Laurence	Pierre.	The	formal	proof	of

sequent ial	circuits	described	in	CASCADE	using	the	Boyer-Moore	theorem	prover.	In	L.	Claesen,	editor,	Formal	VLSI

Correctness	Veri	cat ion.	Elsevier,	1990.	Laurence	Pierre.	VHDL	descript ion	and	formal	veri	cat ion	of	systolic	mult ipliers.	In	IFIP

Conference	on	Hardware	Descript ion	Languages	and	their	applicat ions,	Ottawa,	Canada,	April	1993.	Laurence	Pierre.	An

automat ic	generalizat ion	method	for	the	induct ive	proof	of	replicated	and	parallel	architectures.	In	Theorem	Provers	in	Circuit

Design,	Bad	Herrenalb	(Blackforest),	Germany,	September	1994.	Wolfgang	Polak.	Compiler	Speci	cat ion	and	Veri	cat ion.	LNCS

124.	Springer	Verlag,	New	York,	1981.	GNU	Project .	Bison	-	Manual	Page.	Public	Domain	Software,	1988.	M.	O.	Rabin	and	D.

Scott .	Finite	automata	and	their	decision	problems.	IBM	Journal,	pages	114{125,	April	1959.	David	M.	Russino	.	An	experiment

with	the	Boyer-Moore	theorem	prover:	A	proof	of	Wilson's	theorem.	Journal	of	Automated	Reasoning,	1(2):121{139,	1985	.

David	M.	Russino	.	A	mechanical	proof	of	quadrat ic	reciprocity.	Journal	of	Automated	Reasoning,	8(1),	1992.	N.	Shankar.	A

mechanical	proof	of	the	Church-Rosser	theorem.	Technical	Report 	45,	University	of	Texas,	Inst itute	for	Computer	Science,

Aust in,	Texas,	March	1985.	N.	Shankar.	Proof	Checking	Metamathematics.	PhD	thesis,	Univ.	of	Texas,	Aust in,	1986.	S.	Sippu

and	E.	Soisalon-Soininen.	Parsing	Theory.	Vol.1:	Languages	and	Parsing,	volume	15	of	EATCS	Monograph	on	Theoret ical

Computer	Science.	Springer	Verlag,	Berlin,	1988.

VCDM90]	D.	Verkest,	L.	Claesen,	and	H.	De	Man.	Correctness	proofs	of	parameterized	hardware	modules	in	the	Cathedral-II

synthesis	environment.	In	Proceedings	of	EDAC-90,	pages	62	{	66,	March	1990.	VVCDM92]	D.	Verkest,	J.	Vandenbergh,	L.

Claesen,	and	H.	De	Man.	A	descript ion	methodology	for	parameterized	modules	in	the	Boyer-Moore	logic.	In	V.	Stavridou,	T.	F.

Melham,	and	R.	T.	Boute,	editors,	IFIP	Transact ions	A-10:	Theorem	Provers	in	Circuit 	Design,	pages	37	{	57.	Elsevier,	1992.

WM92]	WW90]	Reinhard	Wilhelm	and	Dieter	Maurer.	Ubersetzerbau.	Theorie,	Konstrukt ion,	Generierung.	Springer	Verlag,

Berlin,	Heidelberg,	1992.	Debora	Weber-Wul	.	Trip	report 	:	Visit 	to	Computat ional	Logic,	Inc.,	Aust in,	Texas.	Technical	Report

DWW	1,	ProCoS,	Kiel,	February	1990.

186	WW91]	WW92]	WW93a]	WW93b]	You88]	You89]	You93]	Yu90]

BIBLIOGRAPHY

Debora	Weber-Wul	.	Pass	collapsing	:	An	opt imizat ion	method	for	compiler	proofs.	Technical	Report 	DWW	7,	ProCoS	Kiel,

September	1991.	Debora	Weber-Wul	.	When	whitespace	conveys	meaning.	Technical	Report 	DWW	10,	TFH	Berlin,	Berlin,

October	1992.	Debora	Weber-Wul	.	Proof	movie	:	A	Proof	with	the	Boyer-Moore	prover.	Formal	Aspects	of	Comput ing,

5:121{151,	1993.	Debora	Weber-Wul	.	Selling	formal	methods	to	industry.	In	FME'93	Symposium	Industrial	Strength	Formal

Methods.	Proceedings.	April	19-23,	1993,	Odense,	Denmark,	number	670	in	LNCS,	pages	671{678,	1993.	William	D.	Young.	A

veri	ed	code	generator	for	a	subset	of	Gypsy.	Technical	Report 	33,	CLInc,	1988.	William	D.	Young.	A	mechanically	veri	ed	code

generator.	Journal	of	Automated	Reasoning,	5(4),	Dec	1989.	also	available	as	CLInc	Technical	Report 	37	,	1989.	William	D.

Young.	A	mechanically	checked	proof	of	the	equivalence	of	determinist ic	and	non-determinist ic	nite	state	machines,	October	19,

1993.	CLInc	Internal	Note	#290.	Yuan	Yu.	Computer	proofs	in	group	theory.	Journal	of	Automated	Reasoning,	6:251{286,	1990.

